Chapter 8 Quadrilaterals

Prerequisite Skills for the chapter "Quadrilaterals"

1. $\angle 1$ and $\angle 4$ are vertical angles.
2. $\angle 3$ and $\angle 5$ are consecutive interior angles.
3. $\angle 7$ and $\angle 3$ are corresponding angles.
4. $\angle 5$ and $\angle 4$ are alternate interior angles.
5. $m \angle A+m \angle B+m \angle C=180^{\circ}$
$x^{\circ}+3 x^{\circ}+(4 x-12)^{\circ}=180^{\circ}$

$$
\begin{aligned}
8 x-12 & =180 \\
8 x & =192 \\
x & =24
\end{aligned}
$$

$m \angle A=x^{\circ}=24^{\circ}$
$m \angle B=3 x^{\circ}=3\left(24^{\circ}\right)=72^{\circ}$
$m \angle C=(4 x-12)^{\circ}=(4(24)-12)^{\circ}=84^{\circ}$
6. $\angle 3$ and $\angle 1$ are corresponding angles, so $m \angle 1=m \angle 3=105^{\circ}$
$\angle 1$ and $\angle 2$ are alternate interior angles, so $m \angle 2=m \angle 1=105^{\circ}$
7. Because $\angle 1$ and $\angle 3$ are corresponding angles, $m \angle 3=m \angle 1=98^{\circ}$
8. $\angle 4$ is congruent to the supplement of $\angle 3$ because they are corresponding angles. The supplement of $\angle 3$ is congruent to the supplement of $\angle 1$ because they are corresponding angles. So, $m \angle 4+m \angle 1=180^{\circ}$.

$$
\begin{aligned}
m \angle 4+m \angle 1 & =180^{\circ} \\
82^{\circ}+m \angle 1 & =180^{\circ} \\
m \angle 1 & =98^{\circ}
\end{aligned}
$$

Copyright (C) Houghton Mifflin Harcourt Publishing Company. All rights reserved.
9. $\angle 2$ is congruent to the supplement of $\angle 4$ because they are alternate interior angles. So, $m \angle 4+m \angle 2=180$.

$$
\begin{aligned}
m \angle 4+m \angle 2 & =180^{\circ} \\
m \angle 4+102 & =180^{\circ}
\end{aligned}
$$

$$
m \angle 4=78^{\circ}
$$

Lesson 8.1 Find Angle Measures in Polygons

Investigating Geometry Activity for the lesson

 "Find Angle Measures in Polygons"STEP 3

Polygon	Number of sides	Number of triangles	Sum of measures of interior angles
Triangle	3	1	$1 \cdot 180^{\circ}=180^{\circ}$
Quadrilateral	4	2	$2 \cdot 180^{\circ}=360^{\circ}$
Pentagon	5	3	$3 \cdot 180^{\circ}=540^{\circ}$
Hexagon	6	4	$4 \cdot 180^{\circ}=720^{\circ}$

1. The sum of the measures of the interior angles of a convex heptagon is $5 \cdot 180^{\circ}=900^{\circ}$. The sum of the measures of the interior angles of a convex octagon is $6 \cdot 180^{\circ}=1080^{\circ}$. As the number of sides is increased by 1 , so is the number that is multiplied by 180° to get the sum of the measures of the interior angles.
2. The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.
3. The lengths of the sides does not affect the sum of the interior angle measures of a hexagon. Only the number of sides affects the sum.

Guided Practice for the lesson "Find Angle Measures in Polygons"

1. Use the Polygon Interior Angles Theorem. Substitute 11 for n.

$$
(n-2) \cdot 180^{\circ}=(11-2) \cdot 180^{\circ}=9 \cdot 180^{\circ}=1620^{\circ}
$$

2. Because the sum of the measures of the interior angles is 1440°, set $(n-2) \cdot 180^{\circ}$ equal to 1440° and solve for n.

$$
(n-2) \cdot 180^{\circ}=1440^{\circ}
$$

$$
\begin{aligned}
n-2 & =8 \\
n & =10
\end{aligned}
$$

The polygon has 10 sides. It is a decagon.
3. $m \angle T=m \angle S$

$$
\begin{aligned}
m \angle P+m \angle Q+m \angle R+m \angle S+m \angle T & =(n-2) \cdot 180^{\circ} \\
93^{\circ}+156^{\circ}+85^{\circ}+m \angle T+m \angle T & =(5-2) \cdot 180^{\circ} \\
334^{\circ}+2 m \angle T & =540^{\circ} \\
2 m \angle T & =206^{\circ} \\
m \angle T & =103^{\circ}=m \angle S
\end{aligned}
$$

4. Let x° equal the measure of the fourth angle.

$$
\begin{aligned}
x^{\circ}+89^{\circ}+110^{\circ}+46^{\circ} & =360^{\circ} \\
x+245 & =360 \\
x & =115
\end{aligned}
$$

5. Use the Polygon Exterior Angles Theorem.

$$
\begin{aligned}
x^{\circ}+34^{\circ}+49^{\circ}+58^{\circ}+67^{\circ}+75^{\circ} & =360^{\circ} \\
x+283 & =360 \\
x & =77
\end{aligned}
$$

6. If the angles form a linear pair, they are supplementary so their sum is 180°. The measure of the interior angle could have been subtracted from 180° to find the measure of the exterior angle. $180^{\circ}-150^{\circ}=30^{\circ}$

Exercises for the lesson "Find Angle Measures in Polygons"

Skill Practice

1.

2. There are 2 • n exterior angles in an n-gon. However, only 1 angle at each vertex, or n-angles, is considered when using the Polygon Exterior Angles Theorem.
3. A nonagon has 9 sides. $(n-2) \cdot 180^{\circ}=(9-2) \cdot 180^{\circ}=7 \cdot 180^{\circ}=1260^{\circ}$
4. $(n-2) \cdot 180^{\circ}=(14-2) \cdot 180^{\circ}=12 \cdot 180^{\circ}=2160^{\circ}$
5. $(n-2) \cdot 180^{\circ}=(16-2) \cdot 180^{\circ}=14 \cdot 180^{\circ}=2520^{\circ}$
6. $(n-2) \cdot 180^{\circ}=(20-2) \cdot 180^{\circ}=18 \cdot 180^{\circ}=3240^{\circ}$
7. $(n-2) \cdot 180^{\circ}=360^{\circ}$

$$
n-2=2
$$

$$
n=4
$$

The polygon has 4 sides. It is a quadrilateral.
8. $(n-2) \cdot 180^{\circ}=720^{\circ}$

$$
\begin{aligned}
n-2 & =4 \\
n & =6
\end{aligned}
$$

The polygon has 6 sides. It is a hexagon.
9. $(n-2) \cdot 180^{\circ}=1980^{\circ}$

$$
\begin{aligned}
n-2 & =11 \\
n & =13
\end{aligned}
$$

The polygon has 13 sides. It is a 13 -gon.
10. $(n-2) \cdot 180^{\circ}=2340^{\circ}$

$$
\begin{aligned}
n-2 & =13 \\
n & =15
\end{aligned}
$$

The polygon has 15 sides. It is a 15 -gon.
11. $x^{\circ}+86^{\circ}+140^{\circ}+138^{\circ}+59^{\circ}=(n-2) \cdot 180^{\circ}$

$$
\begin{aligned}
x+86+140+138+59 & =(5-2) \cdot 180 \\
x+423 & =540 \\
x & =117
\end{aligned}
$$

12. $x^{\circ}+121^{\circ}+96^{\circ}+101^{\circ}+162^{\circ}+90^{\circ}=(n-2) \cdot 180^{\circ}$

$$
x+121+96+101+162+90=(6-2) \cdot 180
$$

$$
x+570=720
$$

$$
x=150
$$

13. $x^{\circ}+143^{\circ}+2 x^{\circ}+152^{\circ}+116^{\circ}+125^{\circ}+140^{\circ}+139^{\circ}$

$$
=(n-2) \cdot 180^{\circ}
$$

$$
x+143+2 x+152+116+125+140+139
$$

$$
=(8-2) \cdot 180
$$

$3 x+815=1080$
$3 x=265$
$x=88 . \overline{3}$
14. $x^{\circ}+78^{\circ}+106^{\circ}+65^{\circ}=360^{\circ}$

$$
\begin{aligned}
x+249 & =360 \\
x & =111
\end{aligned}
$$

15. $x^{\circ}+77^{\circ}+2 x^{\circ}+45^{\circ}+40^{\circ}=360^{\circ}$

$$
\begin{aligned}
3 x+162 & =360 \\
3 x & =198
\end{aligned}
$$

$$
x=66
$$

16. $x^{\circ}+x^{\circ}+58^{\circ}+39^{\circ}+50^{\circ}+48^{\circ}+59^{\circ}=360^{\circ}$

$$
\begin{aligned}
2 x+254 & =360 \\
2 x & =106 \\
x & =53
\end{aligned}
$$

17. The student's error was thinking the sum of the measures of the exterior angles of different polygons are different when in fact this sum is always 360°.
The student should have claimed that the sum of the measures of the interior angles of an octagon is greater than the sum of the measures of the interior angles of a hexagon because an octagon has more sides.
18. $\mathrm{B} ; x^{\circ}+2 x^{\circ}+3 x^{\circ}+4 x^{\circ}=(n-2) \cdot 180^{\circ}$

$$
\begin{aligned}
x+2 x+3 x+4 x & =(4-2) \cdot 180 \\
10 x & =360 \\
x & =36
\end{aligned}
$$

Because $x=36^{\circ}$, then $4 x^{\circ}=144^{\circ}$
19. $(n-2) \cdot 180^{\circ}=(5-2) \cdot 180^{\circ}=540^{\circ}$

The measure of each interior angle is $540 \div 5=108^{\circ}$.
The measure of each exterior angle is $360 \div 5=72^{\circ}$.
20. $(n-2) \cdot 180^{\circ}=(18-2) \cdot 180^{\circ}=2880^{\circ}$

The measure of each interior angle is $2880^{\circ} \div 18=160^{\circ}$.
The measure of each exterior angle is $360^{\circ} \div 18=20^{\circ}$.
21. $(n-2) \cdot 180^{\circ}=(90-2) \cdot 180=15,840^{\circ}$

The measure of each interior angle is $15,840^{\circ} \div 90=176^{\circ}$.
The measure of each exterior angle is $360^{\circ} \div 90=4^{\circ}$.
22. $\frac{S T}{R U}=\frac{K L}{J M}$

$$
\frac{6}{12}=\frac{10}{J M}
$$

$6 \cdot J M=120$

$$
J M=20
$$

The length of $\overline{J M}$ is 20 .
23. The sides of each polygon are congruent, so the ratio of corresponding sides will always be the same. The measures of the angles in any regular pentagon are the same because the measures do not depend on the side length.
24. $(n-2) \cdot 180^{\circ}=156^{\circ} \cdot n$

$$
\begin{aligned}
180 n-360 & =156 n \\
180 n & =360+156 n \\
24 n & =360 \\
n & =15
\end{aligned}
$$

25. $\left(9^{\circ}\right) n=360^{\circ}$

$$
n=40
$$

26. The number of sides n, of a polygon can be calculated with the Polygon Interior Angles Theorem. n must be a positive, whole number.

Geometry

a.
b.

$$
\begin{aligned}
\left(165^{\circ}\right) n & =(n-2) \cdot 180^{\circ} \\
165 n & =180 n-360 \\
-15 n & =-360 \\
n & =24 ; \text { possible }
\end{aligned}
$$

c.

$$
\begin{aligned}
\left(75^{\circ}\right) n & =(n-2) \cdot 180^{\circ} \\
75 n & =180 n-360 \\
-105 n & =-360 \\
n & =3.43 ; \text { not possible }
\end{aligned}
$$

$$
\begin{aligned}
\left(171^{\circ}\right) n & =(n-2) \cdot 180^{\circ} \\
171 n & =180 n-360 \\
-9 n & =-360 \\
n & =40 ; \text { possible }
\end{aligned}
$$

d.
$\left(40^{\circ}\right) n=(n-2) \cdot 180^{\circ}$
$40 n=180 n-360$
$-140 n=-360$
$n=2.57$; not possible
27. An increase of one in the number of sides of a polygon results in an increase of 180° in the sum of the measures of the interior angles. If the sum is increased by 540°, the increase in the number of sides is $540^{\circ} \div 180^{\circ}=3$.

Problem Solving

28. $(n-2) \cdot 180^{\circ}=(5-2) \cdot 180^{\circ}=3 \cdot 180^{\circ}=540^{\circ}$

The sum of the interior angle measures of the playing field is 540°.
29. $(n-2) \cdot 180^{\circ}=(6-2) \cdot 180^{\circ}=4 \cdot 180^{\circ}=720^{\circ}$

The sum of the interior angle measures of the playing field is 720°.
30. $(n-2) \cdot 180^{\circ}=(6-2) \cdot 180^{\circ}=720^{\circ}$

Measure of one angle $=720^{\circ} \div 6=120^{\circ}$
The measure of each interior angle of the hexagon is 120°.
31. Sum of interior angles

$$
(n-2) \cdot 180^{\circ}=(10-2) \cdot 180^{\circ}=1440^{\circ}
$$

The measure of each interior angle is $1440^{\circ} \div 10=144^{\circ}$. The measure of each exterior angle is $360^{\circ} \div 10=36^{\circ}$.
32.

b. $(n-2) \cdot 180^{\circ}=(5-2) \cdot 180^{\circ}=540^{\circ}$
c. $m \angle P+m \angle Q+m \angle R+m \angle S+m \angle T=540^{\circ}$

$$
\begin{aligned}
90^{\circ}+90^{\circ}+m \angle R+90^{\circ}+m \angle R & =540^{\circ} \\
2(m \angle R)+270^{\circ} & =540^{\circ} \\
2 m \angle R & =270^{\circ} \\
m \angle R & =135^{\circ}=m \angle T
\end{aligned}
$$

33. Draw all of the diagonals of $A B C D E$ that have A as an endpoint. The diagonals formed, $\overline{A D}$ and $\overline{A C}$, divide $A B C D E$ into three triangles. By the Angle Addition Postulate, $m \angle C D E=m \angle C D A+m \angle A D E$. Similarly $m \angle E A B=m \angle E A D+m \angle D A C+m \angle C A B$ and $m \angle B C D=m \angle B C A+m \angle A C D$. The sum of the measures of the interior angles of $A B C D E$ is equal to the sum of the measures of the angles of triangles $\triangle A D E$, $\triangle A C D$, and $\triangle A B C$. By the Triangle Sum Theorem,
the sum of the measures of the interior angles of each triangle is 180°, so the sum of the measures of the interior angles of $A B C D E$ is $(5-2) \cdot 180^{\circ}=3 \cdot 180^{\circ}=540^{\circ}$.
34. By the Polygon Interior Angles Theorem, the sum of the measures of the interior angles of a regular polygon is $(n-2) \cdot 180^{\circ}$. A quadrilateral has 4 sides, so the sum of the measures of the interior angles is $(4-2) \cdot 180^{\circ}$ $=2 \cdot 180^{\circ}=360^{\circ}$.
35. Let A be a convex n-gon. At each vertex, each interior angle and one of the exterior angles form a linear pair, so the sum of their measures is 180°. Then the sum of the measures of the interior angles and one exterior angle at each vertex is $n \cdot 180^{\circ}$. By the Polygon Interior Angles Theorem, the sum of the measures of the interior angles of A is $(n-2) \cdot 180^{\circ}$. So the sum of the measures of the exterior angles of A, one at each vertex, is

$$
n \cdot 180^{\circ}-\left[(n-2) \cdot 180^{\circ}\right]=n \cdot 180^{\circ}-n \cdot 180^{\circ}+360^{\circ}
$$

$$
=360^{\circ}
$$

36. a. $h(n)=(n-2) \cdot 180^{\circ} \div n=\frac{1}{n}(n-2) \cdot 180^{\circ}$

$$
\text { b. } \begin{array}{rlrl}
h(n) & =\frac{1}{n}(n-2) \cdot 180^{\circ} & h(n) & =\frac{1}{n}(n-2) \cdot 180^{\circ} \\
h(9) & =\frac{1}{9}(9-2) \cdot 180 & 150^{\circ} & =\frac{1}{n}(n-2) \cdot 180^{\circ} \\
& =\frac{1}{9}(1260) & 150 n & =(n-2) \cdot 180 \\
& =140 & 150 n & =180 n-360 \\
-30 n & =-360 \\
n & =12
\end{array}
$$

The value of $h(n)$ increases as the value of n increases. The graph shows that when n increases, $h(n)$ also increases.
37. a.

Polygon	Number of sides	Number of triangles	Sum of measures of interior angles
Quadrilateral	4	2	$2 \cdot 180^{\circ}=360^{\circ}$
Pentagon	5	3	$3 \cdot 180^{\circ}=540^{\circ}$
Hexagon	6	4	$4 \cdot 180^{\circ}=720^{\circ}$
Heptagon	7	5	$5 \cdot 180^{\circ}=900^{\circ}$

b. Using the results from the table in part (a), you can see that the sum of the measures of the interior angles of a concave polygon is given by $s(n)=(n-2) \cdot 180^{\circ}$ where n is the number of sides.
38.

The measure of one exterior angle of a regular octagon at each vertex is $360^{\circ} \div 8=45^{\circ}$. This means $\angle P B C$ and $\angle P C B$ each have a measure of 45°. Because the sum of the measures of the interior angles of a triangle is 180°, the measure of $\angle B P C$ is $180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}$.

Lesson 8.2 Use Properties of Parallelograms

Investigating Geometry Activity for the lesson "Use Properties of Parallelograms"

STEP 3

The sides $\overline{A B}$ and $\overline{D C}$ remain parallel and their lengths remain equal to each other. Similarly, $\overline{A D}$ and $\overline{B C}$ remain parallel and their lengths remain equal to each other.

STEP 4

If point A is dragged out, the angle measures of $\angle A$ and $\angle C$ decrease, and the angle measures of $\angle B$ and $\angle D$ increase. Similarly, when point B is dragged away from the figure, the angle measures of $\angle B$ and $\angle D$ decrease while the angle measures of $\angle A$ and $\angle C$ increase. Whether point A is dragged or point B is dragged, $\angle A$ and $\angle C$ always have the same measure and $\angle B$ and $\angle D$ always have the same measure.

1. Both sets of opposite sides in the polygon are parallel.
2. Opposite side lengths and opposite angle measures in a parallelogram are always equal.
3. Answers will vary.

Guided Practice for the lesson "Use Properties of Parallelograms"

1. $F G=H E$

$$
m \angle G=m \angle E
$$

$F G=8$
$m \angle G=60^{\circ}$
2. $J K=L M$
$m \angle J=m \angle L$
$18=y+3$
$2 x^{\circ}=50^{\circ}$
$15=y$
$x=25$
3. $N M=K N$
$N M=2$
4. $K M=2 \cdot K N=2 \cdot 2=4$
5. $m \angle J M L=180^{\circ}-m \angle K J M=180-110=70$
6. $m \angle K M L=m \angle J M L-m \angle J M K=70-30=40$

Exercises for the lesson "Use Properties of Parallelograms"

Skill Practice

1. That both pairs of opposite sides of a parallelogram are parallel is a property included in its definition. Other properties of parallelograms are their opposite
sides and angles are congruent, consecutive angles are supplementary, and the diagonals bisect each other.
2. $m \angle C=65^{\circ}$ because $\angle C$ is opposite $\angle A$ in the parallelogram. Consecutive angles in a parallelogram are supplementary, so $\angle B$ and $\angle D$ each have a measure of $180^{\circ}-65^{\circ}=115^{\circ}$.
3. $x=9$
$y=15$
4. $n=12$

$$
\begin{aligned}
m+1 & =6 \\
m & =5
\end{aligned}
$$

5. $a^{\circ}=55^{\circ}$
$a=55$
6. $20=z-8$

$$
28=z
$$

8. $16-h=7$

$$
\begin{aligned}
-h & =-9 \\
h & =9
\end{aligned}
$$

6. $2 p^{\circ}=120^{\circ}$
$p=60$
$105^{\circ}=(d-21)^{\circ}$
$126=d$
$(g+4)^{\circ}=65^{\circ}$
$g=61$
7. $m \angle A+m \angle B=180^{\circ}$
8. $m \angle L+m \angle M=180^{\circ}$
$51^{\circ}+m \angle B=180^{\circ}$
$m \angle B=129^{\circ}$

$$
\begin{aligned}
m \angle L+95^{\circ} & =180^{\circ} \\
m \angle L & =85^{\circ}
\end{aligned}
$$

11. $m \angle X+m \angle Y=180^{\circ}$
$119^{\circ}+m \angle Y=180^{\circ}$ $m \angle Y=61^{\circ}$
12.

$\angle R \cong \angle P$ and $\angle S \cong \angle Q$

$$
m \angle R+m \angle S=180^{\circ} \quad m \angle R=m \angle S+24^{\circ}
$$

$\left(m \angle S+24^{\circ}\right)+m \angle S=180^{\circ}$

$$
=78^{\circ}+24^{\circ}
$$

$$
24^{\circ}+2 m \angle S=180^{\circ} \quad=102^{\circ}
$$

$2 m \angle S=156^{\circ}$
$m \angle S=78^{\circ}$
13. $b-1=9$
$5 a=15$
$b=10$
$a=3$
14. $4 m=16$
$2 n=9-n$
$m=4$
$3 n=9$
$n=3$
15. $3 x=12$
$5 y=4 y+4$
$x=4$
$y=4$
16. A; Coordinates of midpoint M of $\overline{Q O}=\left(\frac{2+0}{2}, \frac{5+0}{2}\right)$

$$
=\left(1, \frac{5}{2}\right)
$$

17. $\overline{A D} \cong \overline{B C}$
$\overline{A D}$ and $\overline{B C}$ are opposite sides of a parallelogram.
18. $\angle A D C \cong \angle A B C$
$\angle A D C$ and $\angle A B C$ are opposite angles of a parallelogram.

Geometry

19. $\angle C B D \cong \angle A D B$
$\angle C B D$ and $\angle A D B$ are alternate interior angles.
20. $m \angle B C D=92^{\circ}$
$m \angle B C D=m \angle B A D$ because they are opposite angles of a parallelogram.
21. $m \angle B D C=92^{\circ}$
$m \angle B A D=m \angle B C D$ because they are opposite angles of a parallelogram. Because $\angle B C D \cong \angle B D C$,
$m \angle B C D=m \angle B D C$.
22. $m \angle A D B=48^{\circ}$
$m \angle A D B=m \angle C B D$ because they are alternate interior angles.
23. $m \angle E J F=180^{\circ}-60^{\circ}=120^{\circ}$ $\angle E J F$ and $\angle F J G$ form a linear pair.
24. $m \angle E G F=m \angle H E G=85^{\circ}$
$\angle E G F$ and $\angle H E G$ are alternate interior angles.
25. $m \angle E G F=85^{\circ}$ because $\angle H E G$ and $\angle E G F$ are alternate interior angles. By the Triangle Sum Theorem,
$m \angle J+m \angle G+m \angle F=180^{\circ}$ for $\triangle J G F$.
$m \angle F=180^{\circ}-85^{\circ}-60^{\circ}=35^{\circ}$. So, $m \angle H F G=35^{\circ}$.
26. $m \angle G E F=45^{\circ}$
$\angle G E F$ and $\angle E G H$ are alternate interior angles.
27. $m \angle E G F=85^{\circ}$ because $\angle H E G$ and $\angle E G F$ are alternate interior angles. By the Angle Addition Postulate,
$m \angle H G F=m \angle H G E+m \angle E G F$.
So, $m \angle H G F=45^{\circ}+85^{\circ}=130^{\circ}$.
28. From Exercise 27, you know that $m \angle H G F=130^{\circ}$. Because consecutive angles of a parallelogram are supplementary, $m \angle E H G+m \angle H G F=180^{\circ}$. So, $m \angle E H G=180^{\circ}-130^{\circ}=50^{\circ}$.
29. C ; Let $p=$ perimeter of $\square A B C D$.
$p=A B+B C+C D+A D=14+20+14+20=68$
30.

$$
0.25 x^{\circ}+x^{\circ}=180^{\circ} \quad 0.25 x^{\circ}=0.25(144)=36
$$

$$
1.25 x=180
$$

$$
x=144
$$

31.

$$
\begin{aligned}
4 x^{\circ}+50^{\circ} & \\
4 x^{\circ}+50^{\circ} & \\
4 x^{\circ}+50^{\circ}+x^{\circ}=180^{\circ} & 4 x^{\circ}+50^{\circ}=4(26)+50 \\
5 x+50=180 & \\
5 x=130 &
\end{aligned}
$$

32.

The student is incorrect because $\angle A$ and $\angle B$ are consecutive angles. Consecutive angles of a parallelogram are supplementary.
33. Because $\overline{S T} \cong \overline{Q R} \cong \overline{U V}$, x, the length of $\overline{U V}$ is 20 .

Because $\angle U T S$ and $\angle T S V$ are supplementary, $m \angle T S V=180^{\circ}-40^{\circ}=140^{\circ}$. By the Angle Addition Postulate, $m \angle T S V=m \angle T S U+m \angle U S V$. $140^{\circ}=y^{\circ}+80^{\circ}$. So, $y=60^{\circ}$.
34.

$4 y+5=y+14$
$x-5=-2 x+37$
$3 y+5=14$
$3 x-5=37$
$3 y=9$
$3 x=42$
$y=3$
$x=14$
Let p represent the perimeter of $\square M N P Q$.
$p=17+9+17+9=52$
35. Sample answer: Because $m \angle B=124^{\circ}$ and $m \angle A=66^{\circ}$, $m \angle B=m \angle A=190^{\circ}$. Consecutive angles are not supplementary, so $A B C D$ is not a parallelogram.
36.

$$
\begin{aligned}
& 32^{\circ}+\left(x^{2}\right)^{\circ}=12 x^{\circ} \\
& x^{2}-12 x+32=0 \\
& (x-8)(x-4)=0 \\
& x-8=0 \quad \text { or } \quad x-4=0 \\
& x=8 \quad \text { or } \quad x=4
\end{aligned}
$$

If $x=8$:

$$
\text { If } x=4
$$

$m \angle M N P=12 \cdot 8^{\circ}=96^{\circ}$
$m \angle M N P=12 \cdot 4^{\circ}=48^{\circ}$
96° is not an acute angle.
48° is an acute angle.
Because $x=4, x^{2}=(4)^{2}=16$. So $m \angle N L P=16^{\circ}$.
37.

In each quadrilateral, each pair of opposite sides is parallel.
rex le

Problem Solving

38. $m \angle D+m \angle C=180^{\circ}$

$$
\begin{aligned}
m \angle D+40^{\circ} & =180^{\circ} \\
m \angle D & =140^{\circ}
\end{aligned}
$$

$\angle D$ and $\angle C$ are consecutive angles. So, $\angle D$ and $\angle C$ are supplementary.
39. a. $P Q=R S=3$

The length of $\overline{R S}$ is 3 inches.
b. $m \angle Q=m \angle S=70^{\circ}$
c. $\angle P$ and $\angle Q$ are supplementary. When $m \angle Q$ increases, $m \angle P$ decreases. When $m \angle Q$ decreases, $m \angle P, m \angle R$ and the length of $\overline{Q S}$ increase.
40. $\frac{L M}{M N}=\frac{4}{3}$

$$
4 M N=3 L M
$$

$$
M N=\frac{3}{4} L M
$$

$$
\begin{aligned}
\text { Let } p & =\text { perimeter of } L M N O . \\
p & =2 \cdot L M+2 \cdot M N \\
28 & =2 L M+2\left(\frac{3}{4} L M\right) \\
28 & =\frac{7}{2} L M \\
8 & =L M
\end{aligned}
$$

41.

The quadrilateral is a parallelogram because both pairs of opposite sides are congruent.
You can arrange eight such congruent triangles to make a parallelogram that is similar to the one shown above, but with all side lengths twice as long.
42. Given: $A B C D$ is a \square.

Prove: $\angle A \cong \angle C$,

$$
\angle B \cong \angle D
$$

Statements	Reasons		
1. $A B C D$ is a \square.	1. Given		
2. $\overline{B C}\\|\overline{A D}, \overline{A B}\\| \overline{C D}$	2. Definition of a parallelogram		
3. $\begin{aligned} & \angle C B D \cong \angle A D B \\ & \angle C D B \cong \angle A B D \end{aligned}$	3. Alternate Interior Angles Congruence Theorem		
4. $\overline{B D} \cong \overline{B D}$	4. Reflexive Property of Congruence		
5. $\triangle A B D \cong \triangle C D B$	5. ASA		
6. $\angle A \cong \angle C$	6. Corr. parts of \cong © are \cong.		
$\begin{gathered} \text { 7. } m \angle C B D=m \angle A D B, \\ m \angle C D B=m \angle A B D \end{gathered}$	7. Definition of congruent angles		
8. $\begin{aligned} & m \angle B=m \angle A B D+m \angle C B D \\ & m \angle D=m \angle A D B+m \angle C D B \end{aligned}$	8. Angle Addition Postulate		
9. $m \angle B=m \angle D$	9. Transitive Property of Congruence		
10. $\angle B \cong \angle D$	10. Definition of congruent angles		

43. Given: $P Q R S$ is a parallelogram.
Prove: $x^{\circ}+y^{\circ}=180^{\circ}$

Statements	Reasons	
1. $P Q R S$ is a parallelogram.	1. Given	
2. $m \angle Q=x^{\circ}$ and $m \angle P=y^{\circ}$	2. Given	
3. $\overline{P S} \\| \overline{Q R}$	3. Definition of a parallelogram	
4. $\angle P$ and $\angle Q$ are 4. Consecutive Interior supplementary. Angles Theorem		
5. $m \angle Q+m \angle P=180^{\circ}$ 5. Definition of supplementary angles 6. $x^{\circ}+y^{\circ}=180^{\circ}$ 6. Substitution		

44. Given: $P Q R S$ is a parallelogram.
Prove: The diagonals bisect each other.

$\frac{\text { Statements }}{\text { 1. } P Q R S \text { is a parallelogram. }}$
45. $\overline{P Q} \cong \overline{R S}, \overline{Q R} \cong \overline{S P}$
46. $\overline{Q R}\|\overline{P S}, \overline{P Q}\| \overline{R S}$
47. $\angle Q P R \cong \angle S R P$, $\angle P Q S \cong \angle R S Q$, $\angle R P S \cong \angle Q R P$, $\angle P S Q \cong \angle R Q S$
48. $\triangle P M Q \cong \triangle R M S$, $\triangle Q M R \cong \triangle S M P$
49. $\overline{Q M} \cong \overline{S M}, \overline{P M} \cong \overline{R M}$
50. $\overline{P R}$ bisects $\overline{Q S}$ and $\overline{Q S}$ bisects $\overline{P R}$.

Reasons

1. Given
2. If a quadrilateral is a parallelogram, then its opposite sides are congruent.
3. Definition of a parallelogram
4. Alternate Interior Angles Congruence Theorem
5. ASA
6. Corr. parts of \cong © are \cong.
7. Definition of segment bisector
8. Sample answer: $\triangle D C G \sim \triangle A C F$ and $\triangle D A E \sim \triangle A C F$ using the AA Similarity Postulate. $\frac{D G}{A F}=\frac{D C}{A C}$ and $\frac{D E}{A F}=\frac{D A}{A C}$ since the ratio of corresponding sides of similar triangles are equal. Adding, you get $\frac{D E}{A F}+\frac{D G}{A F}=\frac{D A}{A C}+\frac{D C}{A C}$, which implies $\frac{D E+D G}{A F}=$ $\frac{D A+D C}{A C}$, which implies $\frac{D E+D G}{A F}=\frac{A C}{A C}$, which implies $\frac{D E+D G}{A F}=1$, which implies $D E+D G=A F$.

Geometry

Quiz for the lessons "Find Angle Measures in Polygons" and "Use Properties of Parallelograms"

1. $x^{\circ}+89^{\circ}+125^{\circ}+100^{\circ}+105^{\circ}=(n-2) \cdot 180^{\circ}$

$$
\begin{aligned}
x+89+125+100+105 & =(5-2) \cdot 180 \\
x+419 & =540 \\
x & =121
\end{aligned}
$$

2. $x^{\circ}+115^{\circ}+84^{\circ}+139^{\circ}+150^{\circ}+90^{\circ}=(n-2) \cdot 180^{\circ}$ $x+115+84+139+150+90=(6-2) \cdot 180$ $x+578=720$ $x=142$
3. $x^{\circ}+78^{\circ}+80^{\circ}+90^{\circ}=360^{\circ}$

$$
\begin{aligned}
x+248 & =360 \\
x & =112
\end{aligned}
$$

4. $6 x-3=21$
$6 x=24$
$7 y-6=15$
$x=4$
$7 y=21$
$y=3$
5. $2 y-1=9$
$x+3=12$
$2 y=10$
$x=9$

$$
y=5
$$

6. $a^{\circ}+(a-10)^{\circ}=180^{\circ}$
$b^{\circ}=(a-10)^{\circ}$
$2 a-10=180$
$b=(95-10)$
$2 a=190$
$b=85$
$a=95$

Lesson 8.3 Show that a Quadrilateral is a Parallelogram

Guided Practice for the lesson"Show that a Quadrilateral is a Parallelogram"
1.

$m \angle W+m \angle X+m \angle Y+m \angle Z=(n-2) \cdot 180^{\circ}$ $42+138+42+m \angle Z=(4-2) \cdot 180$ $222+m \angle Z=360$ $m \angle Z=138$
$W X Y Z$ is a parallelogram because both pairs of opposite angles are congruent.
2. If one pair of opposites of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.
3. If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
4. If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
5. $2 x=10-3 x$
$5 x=10$
$x=2$
For the quadrilateral to be a parallelogram, the diagonals must bisect each other. This only occurs when $x=2$.
6. One way is to use the definition of a parallelogram. Find the slopes of all the sides of the quadrilateral. Because both pairs of opposite sides have the same slope, each pair of opposite sides are parallel. Another way is to use Theorem 8.7. Find the length of each side of the quadrilateral. Because both pairs of opposite sides have the same length, both pairs of opposite sides are congruent. Another way is to use Theorem 8.10. Draw and find the midpoint of the diagonals of the quadrilateral. Because the midpoint of each diagonal is the same point, the diagonals bisect each other.

Exercises for the lesson"Show that a Quadrilateral is a Parallelogram"

Skill Practice

1. By definition, if both pairs of opposite sides in a quadrilateral are parallel, the quadrilateral is a parallelogram. Knowing that $\overline{A B} \| \overline{C D}$ and $\overline{A D} \| \overline{B C}$ proves the quadrilateral is a parallelogram.
2. By Theorem 8.7, if both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
3. By Theorem 8.7, if both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. The quadrilateral shown has two pairs of adjacent sides that are congruent.
4. Both pairs of opposite angles are congruent, so you can use Theorem 8.8 to show the quadrilateral is a parallelogram.
5. Both pairs of opposite sides are congruent, so you can use Theorem 8.7 to show the quadrilateral is a parallelogram.
6. The diagonals of the quadrilateral bisect each other, so you can use Theorem 8.10 to show the quadrilateral is a parallelogram.
7. Because both pairs of opposite sides are congruent, the quadrilateral $J K L M$ is a parallelogram. This means both pairs of opposite sides are parallel, so $\overline{J K} \| \overline{M L}$.
8. $2 x+3=x+7$
9. $5 x-6=4 x+2$
$x-6=2$
$x=8$
10. $6 x=3 x+2$
$3 x=2$
$x=\frac{2}{3}$
11.

Midpoint of $\overline{B D}=\left(\frac{4+8}{2}, \frac{4+1}{2}\right)=\left(6, \frac{5}{2}\right)$
Midpoint of $\overline{A C}=\left(\frac{0+12}{2}, \frac{1+4}{2}\right)=\left(6, \frac{5}{2}\right)$
The diagonals of $A B C D$ bisect each other, so $A B C D$ is a parallelogram.
12.

$$
\begin{aligned}
A B & =\sqrt{(-3-(-3))^{2}+(4-0)^{2}}=\sqrt{0^{2}+4^{2}}=4 \\
B C & =\sqrt{(3-(3))^{2}+(-1-4)^{2}} \\
& =\sqrt{6^{2}+(-5)^{2}}=\sqrt{61} \\
C D & =\sqrt{(3-3)^{2}+(-5-(-1))^{2}}=\sqrt{0^{2}+(-4)^{2}}=4 \\
D A & =\sqrt{(-3-3)^{2}+(0-(-5))^{2}} \\
& =\sqrt{(-6)^{2}+5^{2}}=\sqrt{61}
\end{aligned}
$$

Both pairs of opposite sides are congruent, so $A B C D$ is a parallelogram.
13.

Slope of $\overline{A B}=\frac{7-3}{-5-(-2)}=-\frac{4}{3}$
Slope of $\overline{B C}=\frac{6-7}{3-(-5)}=-\frac{1}{8}$
Slope of $\overline{C D}=\frac{2-6}{6-3}=-\frac{4}{3}$
Slope of $\overline{D A}=\frac{2-3}{6-(-2)}=-\frac{1}{8}$
Both pairs of opposite sides are parallel, so $A B C D$ is a parallelogram.
14.

$$
\begin{aligned}
\overline{A B} & =\sqrt{(0-(-5))^{2}+(4-0)^{2}}=\sqrt{5^{2}+4^{2}}=\sqrt{41} \\
\overline{C D} & =\sqrt{(-2-3)^{2}+(-4-0)^{2}}=\sqrt{(-5)^{2}+(-4)^{2}} \\
& =\sqrt{41}
\end{aligned}
$$

Slope of $\overline{A B}=\frac{4-0}{0-(-5)}=\frac{4}{5}$
Slope of $\overline{C D}=\frac{-4-0}{-2-3}=\frac{4}{5}$
Because $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}, A B C D$ is a parallelogram.
15. Use the SAS Congruence Postulate to prove $\triangle A D B \cong \triangle C B D$. Corresponding parts of congruent triangles are congruent, so $\overline{A D} \cong \overline{C B}$ and $\overline{A B} \cong \overline{C D}$. Because both pairs of opposite sides are congruent, $A B C D$ is a parallelogram.
16. Because $\angle A D B \cong \angle C B D, \angle A B D \cong \angle C D B$, and these angle pairs are alternate interior angles, $\overline{A B} \| \overline{D C}$ and $\overline{A D} \| \overline{B C}$. Because both pairs of opposite sides are congruent, $A B C D$ is a parallelogram.
17. Because $\angle B$ and $\angle C$ are congruent alternate interior angles, $\overline{A B} \| \overline{D C}$ by the Alternate Interior Angle Converse. Because $\angle C$ and $\angle D$ are congruent corresponding angles, $\overline{A D} \| \overline{B C}$ by the Corresponding Angles Converse. Both pairs of opposite sides are parallel so $A B C D$ is a parallelogram.
18. A; $\angle Y$ and $\angle W$ are not consecutive angles, so they are not necessarily supplementary.
19. $x^{\circ}+66^{\circ}=180^{\circ}$
20. $x^{\circ}+3 x^{\circ}=180^{\circ}$
$x=114$
$4 x=180$
$x=45$
21. $(x+10)^{\circ}+(2 x+20)^{\circ}=180^{\circ}$

$$
\begin{aligned}
3 x+30 & =180 \\
3 x & =150 \\
x & =50
\end{aligned}
$$

22. A quadrilateral is a parallelogram if and only if both pairs of opposite sides are congruent.
23. A quadrilateral is a parallelogram if and only if both pairs of opposite angles are congruent.
24. If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram. Theorem 8.10
25. Midpoint of $\overline{A C}=\left(\frac{-2+3}{2}, \frac{-3+2}{2}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$

Midpoint of $\overline{B D}=\left(\frac{4+x}{2}, \frac{-3+y}{2}\right)$

Geometry

Because $A B C D$ is a parallelogram, the midpoint of $\overline{B D}$
is $\left(\frac{1}{2},-\frac{1}{2}\right)$.

$$
\left.\begin{array}{rlrl}
\text { So, } \frac{4+x}{2} & =\frac{1}{2} & \text { and } & \frac{-3+y}{2}
\end{array}=-\frac{1}{2}\right\}
$$

The coordinates of point D are $(-3,2)$.
26. Midpoint of $\overline{A C}=\left(\frac{-4+6}{2}, \frac{1+5}{2}\right)=(1,3)$

Midpoint of $\overline{B D}=\left(\frac{-1+x}{2}, \frac{5+y}{2}\right)$
Because $A B C D$ is a parallelogram, the midpoint of $\overline{B D}$ is $(1,3)$.

$$
\begin{aligned}
\text { So, } \frac{-1+x}{2} & =1 & \text { and } & \frac{5+y}{2}
\end{aligned}=3
$$

The coordinates of point D are $(3,1)$.
27. Midpoint of $\overline{A C}=\left(\frac{-4+3}{2}, \frac{4+(-1)}{2}\right)=\left(-\frac{1}{2}, \frac{3}{2}\right)$

Midpoint of $\overline{B D}=\left(\frac{4+x}{2}, \frac{6+y}{2}\right)$
Because $A B C D$ is a parallelogram, the midpoint of
$\overline{B D}$ is $\left(-\frac{1}{2}, \frac{3}{2}\right)$.
So, $\frac{4+x}{2}=-\frac{1}{2} \quad$ and $\quad \frac{6+y}{2}=\frac{3}{2}$

$$
\begin{array}{rlrl}
4+x & =-1 & 6+y & =3 \\
x & =-5 & y & =-3
\end{array}
$$

The coordinates of point D are $(-5,-3)$.
28. Midpoint of $\overline{A C}=\left(\frac{-1+8}{2}, \frac{0+(-6)}{2}\right)=\left(\frac{7}{2},-3\right)$

Midpoint of $\overline{B D}=\left(\frac{0+x}{2}, \frac{-4+y}{2}\right)$
Because $A B C D$ is a parallelogram, the midpoint of $\overline{B D}$
is $\left(\frac{7}{2},-3\right)$.
So, $\frac{x}{2}=\frac{7}{2} \quad$ and $\quad \frac{-4+y}{2}=-3$

$$
\begin{aligned}
x=7 \quad-4+y & =-6 \\
y & =-2
\end{aligned}
$$

The coordinates of point D are $(7,-2)$.
29. Sample answer: Use Theorem 8.7 to construct a parallelogram with two pairs of congruent sides. Use a straightedge to draw $\overline{A B}$ and $\overline{B C}$ intersecting at point B. At point A, use a compass to draw an arc with radius $\overline{B C}$. At point C, use a compass to draw an arc with radius $\overline{A B}$. The arcs intersect at point D. Draw $\overline{A D}$ and $\overline{C D}$.
30. $\overline{A D} \cong \overline{B C}$ because $A B C D$ is a parallelogram. $\angle A D B$ $\cong \angle C B D$ because they are alternate interior angles. $\overline{B F} \cong \overline{D E}$. By the SAS Congruence Postulate, $\triangle A E D$ $\cong \triangle C F B \cdot \overline{A E} \cong \overline{C F}$ because corresponding parts of congruent triangles are congruent. So, the length of $A E$ is 8 .

Problem Solving

31. a. $E F J K$; Both pairs of opposite sides are congruent. $E G H K$; Both pairs of opposite sides are congruent. $F G H J$; Both pairs of opposite sides are congruent.
b. The lengths of $\overline{E G}, \overline{G H}, \overline{K H}$, and $\overline{E K}$ do not change as the lift moves. Because both pairs of opposite sides are always congruent, $E G H K$ is always a parallelogram, so $\overline{E G}$ and $\overline{H K}$ are always parallel.
32. $A E F D$ and $E B C F$ are parallelograms, so $\overline{A D} \cong \overline{E F}$, $\overline{A E} \cong \overline{D F}, \overline{B C} \cong \overline{E F}$, and $\overline{E B} \cong \overline{F C}$. Because both pairs of opposite sides are always congruent, $A E F D$ and $E B C F$ are always parallelograms. So, $\overline{A B}$ and $\overline{B C}$ remain parallel to $\overline{E F}$.
33.

34.

The point of intersection of the diagonals is not necessarily their midpoint.
35.

The opposite sides that are not marked in the given diagram are not necessarily the same length.
36.

The sides of length 8 are not necessarily parallel.
37. Converse of Theorem 8.5: In a quadrilateral, if consecutive angles are supplementary, then the quadrilateral is a parallelogram.

In $A B C D$, you are given $\angle A$ and $\angle B$ are supplementary, and $\angle C$ and $\angle B$ are supplementary, which gives you $m \angle A=m \angle C$. Also $\angle B$ and $\angle C$ are supplementary, and $\angle C$ and $\angle D$ are supplementary which gives you $m \angle B=m \angle D$. So, $A B C D$ is a parallelogram by Theorem 8.8.
38. The sum of the measures of the interior angles of a quadrilateral is $360^{\circ} . m \angle A+m \angle B+m \angle C+m \angle D=$ 360°. It is given that $\angle A \cong \angle C$ and $\angle B \cong \angle D$, so $m \angle A=m \angle C$ and $m \angle B=m \angle D$. Let $x^{\circ}=m \angle A=$ $m \angle C$ and $y^{\circ}=m \angle B=m \angle D$. By the Substitution Property of Equality, $x^{\circ}+y^{\circ}+x^{\circ}+y^{\circ}=360^{\circ}$. $2\left(x^{\circ}+y^{\circ}\right)=360^{\circ} \cdot x^{\circ}+y^{\circ}=180$. Using the definition of supplementary angles, $\angle A$ and $\angle B, \angle B$ and $\angle C$, $\angle C$ and $\angle D$, and $\angle D$ and $\angle A$ are supplementary. Using Theorem $8.5, A B C D$ is a parallelogram.
39. It is given that $\overline{K P} \cong \overline{M P}$ and $\overline{J P} \cong \overline{L P} . \angle K P J \cong \angle L P M$ and $\angle K P L \cong \angle J P M$ by the Vertical Angles Congruence Theorem. $\triangle K P J \cong \triangle M P L$ and $\triangle K P L \cong \triangle M P J$ by the SAS Congruence Postulate. Because corresponding parts of congruent triangles are congruent, $\overline{K J} \cong \overline{M L}$ and $\overline{K L} \cong \overline{M J}$. Using Theorem 8.7, JKLM is a parallelogram.
40. It is given that $D E B F$ is a parallelogram and $A E=C F$. Because $D E B F$ is a parallelogram, you know that $F D=E B, \angle B F D \cong \angle D E B$, and $E D=F B$. $A E+E B=C F+F D$ which implies that $A B=C D$, which implies that $\overline{A B} \cong \overline{C D} . \angle B F C$ and $\angle B F D$, and $\angle D E B$ and $\angle D E A$ form linear pairs, thus making them supplementary. Using the Congruent Supplements Theorem, $\angle B F C \cong \angle D E A$ making $\triangle A E D \cong \triangle C F B$ using the SAS Congruence Theorem. Because corresponding parts of congruent triangles are congruent, $\overline{A D} \cong \overline{C B} . A B C D$ is a parallelogram by Theorem 8.7.
41.

$\overline{F G}$ is the midsegment of $\triangle C B D$ and therefore is parallel to $\overline{B D}$ and half its length. $\overline{E H}$ is the midsegment of $\triangle A B D$ and therefore is parallel to $\overline{B D}$ and half its length. This makes $\overline{E H}$ and $\overline{F G}$ both parallel and congruent. Using Theorem 8.9, EFGH is a parallelogram.
42. $\overline{F J}$ is the midsegment of $\triangle A E D$ and therefore is parallel to $\overline{A D}$ and half it length. $\overline{G H}$ is the midsegment of $\triangle B E C$ and therefore is parallel to $\overline{B C}$ and half its length. Together, this gives you $\overline{F J} \cong \overline{G H}$ and $\overline{F J} \| \overline{G H}$. Using Theorem 8.9, FGHJ is a parallelogram.

Problem Solving Workshop for the lesson "Show that a Quadrilateral is a Parallelogram"

1. Slope of $\overline{A B}=\frac{3-5}{-3-2}=\frac{2}{5}$

$$
\begin{aligned}
& \text { Slope of } \overline{B C}=\frac{5-2}{2-5}=\frac{3}{-3}=-1 \\
& \text { Slope of } \overline{C D}=\frac{2-0}{5-0}=\frac{2}{5} \\
& \text { Slope of } \overline{D A}=\frac{0-3}{0-(-3)}=-\frac{3}{3}=-1
\end{aligned}
$$

The slopes of $\overline{A B}$ and $\overline{C D}$ are equal, so $\overline{A B}$ and $\overline{C D}$ are parallel. The slopes of $\overline{B C}$ and $\overline{D A}$ are equal, so they are parallel. Because the quadrilateral $A B C D$ has two pairs of parallel sides, it is a parallelogram.
2. Method 1: Show diagonals bisect each other.

The coordinates of the endpoints of diagonal $\overline{E G}$ are $E(-2,1)$ and $G(1,0)$.
Midpoint of $\overline{E G}=\left(\frac{-2+1}{2}, \frac{1+0}{2}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)$
The coordinates of the endpoints of diagonal $\overline{H F}$ are $H(-4,-2)$ and $F(3,3)$.
Midpoint of $\overline{H F}=\left(\frac{-4+3}{2}, \frac{-2+3}{2}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)$
Because the midpoints of both diagonals are the same point, the diagonals bisect each other. So, $E F G H$ is a parallelogram.
Method 2: Show both pairs of opposite sides are parallel.
Slope of $\overline{E F}=\frac{3-1}{3-(-2)}=\frac{2}{5}$
Slope of $\overline{G F}=\frac{3-0}{3-1}=\frac{3}{2}$
Slope of $\overline{H G}=\frac{0-(-2)}{1-(-4)}=\frac{2}{5}$
Slope of $\overline{E H}=\frac{1-(-2)}{-2-(-4)}=\frac{3}{2}$
Both pairs of opposite sides $\overline{E H}$ and $\overline{G F}$, and $\overline{H G}$ and $\overline{E F}$ have the same slope. So, $\overline{E H} \| \overline{G F}$ and $\overline{H G} \| \overline{E F}$. $E F G H$ is a parallelogram.
3. Draw a line connecting Newton, Packard, Quarry, and Riverdale. Label the quadrilateral $N P Q R$. Use the midpoint formula to find the midpoints of diagonals $\overline{N Q}$ and $\overline{R P}$.
The coordinates of the endpoints of $\overline{N Q}$ are $N(3,4)$ and $Q(12,3)$.
Midpoint of $\overline{N Q}=\left(\frac{3+12}{2}, \frac{4+3}{2}\right)=\left(\frac{15}{2}, \frac{7}{2}\right)$
The coordinates of the endpoints of $\overline{R P}$ are $R(5,1)$ and $P(9,6)$.
Midpoint of $\overline{R P}=\left(\frac{5+9}{2}, \frac{1+6}{2}\right)=\left(\frac{14}{2}, \frac{7}{2}\right)=\left(7, \frac{7}{2}\right)$
The midpoints of the two diagonals are not the same point. The diagonals $\overline{N Q}$ and $\overline{R P}$ do not bisect each other. So, the four towns on the map do not form the vertices of a parallelogram.
4. a. Midpoint of $\overline{A C}=\left(\frac{1+7}{2}, \frac{0+2}{2}\right)=\left(\frac{8}{2}, \frac{2}{2}\right)=(4,1)$

Midpoint of $\overline{B D}=\left(\frac{5+3}{2}, \frac{0+2}{2}\right)=\left(\frac{8}{2}, \frac{2}{2}\right)=(4,1)$
The midpoints of the two diagonals are the same. So $\overline{A C}$ and $\overline{B D}$ bisect each other. $A B C D$ is a parallelogram.
b. Midpoint of $\overline{E G}=\left(\frac{3+9}{2}, \frac{4+5}{2}\right)=\left(\frac{12}{2}, \frac{9}{2}\right)=\left(6, \frac{9}{2}\right)$

Midpoint of $\overline{F H}=\left(\frac{6+6}{2}, \frac{8+0}{2}\right)=\left(\frac{12}{2}, \frac{8}{2}\right)=(6,4)$

The midpoints of the two diagonals are not the same. So $\overline{E G}$ and $\overline{F H}$ do not bisect each other. $E F G H$ is not a parallelogram.
c. Midpoint of $\overline{J L}=\left(\frac{-1+2}{2}, \frac{0+2}{2}\right),=\left(\frac{1}{2}, \frac{2}{2}\right)=\left(\frac{1}{2}, 1\right)$

$$
\text { Midpoint of } \begin{aligned}
\overline{K M} & =\left(\frac{2+(-1)}{2}, \frac{-2+4}{2}\right)=\left(\frac{1}{2}, \frac{2}{2}\right) \\
& =\left(\frac{1}{2}, 1\right)
\end{aligned}
$$

The midpoints of the two diagonals are the same, so $\overline{J L}$ and $\overline{K M}$ bisect each other. $J K L M$ is a parallelogram.
5. The student's error was making $\overline{P Q}$ and $\overline{Q R}$ opposite sides when in fact they are adjacent sides.
$\overline{P Q}$ and $\overline{R S}$, and $\overline{Q R}$ and $\overline{S P}$ are opposite sides.
$P Q=\sqrt{(3-2)^{2}+(4-2)^{2}}=\sqrt{5}$
$R S=\sqrt{(6-5)^{2}+(5-3)^{2}}=\sqrt{5}$
$Q R=\sqrt{(6-3)^{2}+(5-4)^{2}}=\sqrt{10}$
$S P=\sqrt{(5-2)^{2}+(3-2)^{2}}=\sqrt{10}$
$\overline{P Q} \cong \overline{R S}$ and $\overline{Q R} \cong \overline{S P}$, so $P Q R S$ is a parallelogram.
6. The possible coordinates of R are $(7,5),(-1,5),(1,-5)$. Sample answer:
To find (7, 5), use the slope from point O to point P. To locate R, start at Q and use the slope and length of $\overline{O P}$.

To find ($-1,5$), use the slope from point Q to point P. To locate R, start at O and use the slope and length of $\overline{Q P}$.

To find ($1,-5$), use the slope from point P to point O. To locate R, start at Q and use the slope and length of $\overline{P O}$.

Mixed Review of Problem Solving for the lessons "Find Angle Measures in Polygons", "Use Properties of Parallelograms", and "Show that a Quadrilateral is a Parallelogram"

1. a. The polygon has 5 sides. It is a pentagon.
b. $(n-2) \cdot 180^{\circ}=(5-2) \cdot 180^{\circ}=540^{\circ}$
c. The sum of the exterior angles of a polygon is always 360°.
2. The sum of the measures of the interior angles of the house is $(5-3) \cdot 180^{\circ}=540^{\circ}$ because there are 5 sides. To find $m \angle A$ and $m \angle C$, subtract 270° from 540° and then divide by 2 .
3. Diagonals in a parallelogram bisect each other, so the lengths of the halves of the diagonals are equal.

$$
\begin{aligned}
12 x+1 & =49 & \text { and } & 8 y+4
\end{aligned}=36
$$

4. $157^{\circ}+128^{\circ}+115^{\circ}+162^{\circ}+169^{\circ}+131^{\circ}+$ $155^{\circ}+168^{\circ}+x^{\circ}+2 x^{\circ}=(n-2) \cdot 180^{\circ}$

$$
\begin{aligned}
1185+3 x & =(10-2) \cdot 180 \\
3 x & =255 \\
x & =85
\end{aligned}
$$

5. In a parallelogram, consecutive angles are supplementary. Solve $x^{\circ}+(3 x-12)^{\circ}=180^{\circ}$ for x. Use the value of x to find the degree measure of the two consecutive angles. In a parallelogram the angle opposite each of these known angles has the same measure.
6. a. $\overline{H G}$ and $\overline{E F}$ are congruent and parallel, so the quadrilateral is a parallelogram. As the binoculars are moved, the shape of the parallelogram changes but both pairs of opposite angles remain congruent. As long as the angles keep their congruency, $\overline{E F}$ and $\overline{G H}$ and $\overline{F G}$ and $\overline{G H}$ remain parallel.
b. As $m \angle E$ changes from 55° to $50^{\circ}, m \angle G$ will change from 55° to 50°. This means $m \angle H$ and $m \angle F$ change from 135° to 140° because consecutive angles in a parallelogram are supplementary.
7. a. Slope of $\overline{M N}=\frac{4-1}{3-(-8)}=\frac{3}{11}$

Slope of $\overline{N P}=\frac{-1-4}{7-3}=-\frac{5}{4}$
Slope of $\overline{P Q}=\frac{-4-(-1)}{-4-7}=\frac{-3}{-11}=\frac{3}{11}$
Slope of $\overline{Q M}=\frac{1-(-4)}{8-(-4)}=-\frac{5}{4}$
$\overline{M N}$ and $\overline{P Q}$ and $\overline{N P}$ and $\overline{Q M}$ have the same slope so they are parallel. By definition, quadrilateral $M N P Q$ is a parallelogram.
b. $M N=\sqrt{(3-(-8))^{2}+(4-1)^{2}}=\sqrt{130}$
$N P=\sqrt{(7-3)^{2}+(-1-4)^{2}}=\sqrt{41}$
$P Q=\sqrt{(-4-7)^{2}+(-4-(-1))^{2}}=\sqrt{130}$
$Q M=\sqrt{(-8-(-4))^{2}+(1-(-4))^{2}}=\sqrt{41}$
$\overline{M N} \cong \overline{P Q}$ and $\overline{N P} \cong \overline{Q M}$. So $M N P Q$ is a parallelogram because both pairs of opposite sides are congruent.
8.
$\frac{\text { Statements }}{\text { 1. } \overline{B X} \| \overline{D Y}}$
2. $\frac{A B C D \text { is a parallelogram. }}{\overline{B X} \perp \overline{A C} \text { and } \overline{D Y} \perp \overline{A C} .}$
3. $\angle B X A$ and $\angle D Y C$ are right angles.
4. $\angle B X A \cong \angle D Y C$
5. $\angle B A X \cong \angle D C Y$
6. $\overline{A B} \cong \overline{C D}$
7. $\triangle B X A \cong \triangle D Y C$
8. $\overline{B X} \cong \overline{D Y}$
9. $X B Y D$ is a \square.

Lesson 8.4 Properties of Rhombuses, Rectangles, and Squares

Guided Practice for the lesson "Properties of Rhombuses, Rectangles, and Squares"

1. E

F If rectangle $E F G H$ is a square, then all four sides are congruent. So, $\overline{F G} \cong \overline{G H}$ if $E F G H$ is a square. Because not all rectangles are squares, the statement is sometimes true.
2.

The quadrilateral has four congruent sides and four congruent angles. So, the quadrilateral is a rhombus and a rectangle. By the Square Corollary, the quadrilateral is a square.
3. P

Q The square is a parallelogram, rhombus, and rectangle. Opposite pairs of sides are parallel and all four sides are congruent. All angles are right angles. Diagonals are congruent and bisect each other. Diagonals are perpendicular and each diagonal bisects a pair of opposite angles.
4. Yes. A parallelogram is a rectangle iff its diagonals are congruent, therefore the diagonals of a rectangle are congruent. If the lengths of the diagonals are found to be the same, the boards will form a rectangle.

Exercises for the lesson "Properties of Rhombuses, Rectangles, and Squares"

Skill Practice

1. Another name for an equilateral rectangle is a square.
2. Yes. The diagonals of the figure are perpendicular so the figure must be a rhombus.
3.

${ }^{K}$ Sometimes; if rhombus JKLM is a square, then all four angles will be right angles and congruent.
4.

K Always; opposite angles in a rhombus are always congruent.
5.

Always; all four sides in a rhombus are congruent.

Always; all four sides in a rhombus are congruent.
7.

K Sometimes; if rhombus JKLM is also a square, the diagonals are congruent because only diagonals of rectangles are congruent.
8.
 ${ }^{K}$ Always; the diagonals in a rhombus bisect opposite angles.
9. w

x Always; a rectangle has four right angles and right angles are congruent.
10. w

X Always; opposite sides of a rectangle are congruent.
11. w

12.
 X Always; the diagonals of a rectangle are congruent.

Geometry

13.

X Sometimes; if $W X Y Z$ is also a rhombus then $\overline{X Y} \perp \overline{X Z}$.
14.

X Sometimes; if $W X Y Z$ is also a rhombus then $\angle W X Z \cong \angle Y X Z$.
15. The quadrilateral is a square because all four sides and angles are congruent.
16. Both pairs of opposite sides are congruent. Because consecutive angles are supplementary, all four angles are right angles. So the quadrilateral is a rectangle.
17. The fourth angle measure is 40°, meaning that both pairs of opposite sides are parallel. So, the figure is a parallelogram with two consecutive sides congruent. But this is only possible if the remaining two sides are also congruent, so the quadrilateral is a rhombus.
18.

Rhombus STUV has four congruent sides. Both pairs of opposite sides and angles are congruent. The diagonals $\overline{S U}$ and $\overline{T V}$ bisect one another, are perpendicular to each other, and they bisect opposite angles. Because rhombus STUV is a parallelogram, by definition, both pairs of opposite sides are parallel.
19. rectangle, square
20. square
21. rhombus, square
22. parallelogram, rectangle, rhombus, square
23. parallelogram, rectangle, rhombus, square
24. rhombus, square
25. The quadrilateral is a rectangle but it is not a rhombus. Angles $\angle P S Q$ and $\angle Q S R$ are not necessarily congruent. They are, however, complementary so their sum is 90°.

$$
\begin{aligned}
(7 x-4)^{\circ}+(3 x+14)^{\circ} & =90^{\circ} \\
10 x+10 & =90 \\
10 x & =80 \\
x & =8
\end{aligned}
$$

26. The quadrilateral is a rhombus because all four sides are congruent.

$$
\begin{array}{rlrl}
x^{\circ}+104^{\circ} & =180^{\circ} & 3 y & =y+8 \\
x & =76 & 2 y & =8 \\
& y & =4
\end{array}
$$

27. The quadrilateral is a rectangle because all four angles are right angles.
$5 x-9=x+31$
$4 y+5=2 y+35$
$4 x-9=31$
$4 x=40$
$x=10$

$$
\begin{aligned}
2 y+5 & =35 \\
2 y & =30 \\
y & =15
\end{aligned}
$$

28. The quadrilateral is a square because all four angles are right angles and the diagonals are perpendicular.
$5 x=3 x+18$
$2 y=10$
$2 x=18$
$y=5$
$x=9$
29. The quadrilateral is a parallelogram because both pairs of opposite sides are congruent, so $m \angle E F G=m \angle E H G$.
$(5 x-6)^{\circ}=(4 x+7)^{\circ}$
$2 y+1=y+3$

$$
\begin{aligned}
x-6 & =7 \\
x & =13
\end{aligned}
$$

$$
y+1=3
$$

$$
y=2
$$

30.

The diagonals bisect each other and are perpendicular. Four right triangles are formed by the diagonals. Each triangle has leg lengths of 3 and 4 and a hypotenuse of length c. Using the Pythagorean Theorem:
$c^{2}=3^{2}+4^{2}$
$c=\sqrt{9+16}$
$c=5$
The perimeter is $4 \cdot 5=20$ inches.
31. $\mathrm{C} ; \frac{A C}{C D}=\frac{F H}{H J}$

$$
\frac{5}{4}=\frac{2 \cdot F M}{H J}
$$

$5(H J)=4(2 \cdot 5)$
$5(H J)=40$
$H J=8$
32. Because $\angle D A C \cong \angle B A C, m \angle D A C=53^{\circ}$.
33. The diagonals of a rhombus are perpendicular. So, $m \angle A E D=90^{\circ}$.
34. $m \angle A D C+m \angle B A D=180^{\circ}$
$m \angle A D C+2 \cdot m \angle B A C=180^{\circ}$
$m \angle A D C+2 \cdot 53^{\circ}=180^{\circ}$
$m \angle A D C+106^{\circ}=180^{\circ}$
$m \angle A D C=74^{\circ}$
35. $D B=2 \cdot D E=2 \cdot 8=16$
36. The diagonals form the right triangle $A E D$ and bisect $\angle D$.
$\cos 37^{\circ}=\frac{8}{x}$

$$
x=\frac{8}{\cos 37^{\circ}}
$$

$$
x \approx 10
$$

$(D E)^{2}+(A E)^{2}=(A D)^{2}$
$8^{2}+(A E)^{2} \approx(10)^{2}$
$(A E)^{2} \approx 36$
$A E \approx 6$
37. $A C=2 \cdot A E \approx 2 \cdot 6 \approx 12$
38. $m \angle S R T+m \angle P T S+m \angle T S R=180^{\circ}$

$$
\begin{aligned}
m \angle S R T+34^{\circ}+90^{\circ} & =180^{\circ} \\
m \angle S R T+124^{\circ} & =180^{\circ} \\
m \angle S R T & =56^{\circ}
\end{aligned}
$$

39. $\angle P T S \cong \angle P R Q \cong \angle R Q P \cong \angle P S T$ $m \angle P Q R+m \angle Q P R+m \angle P R Q=180^{\circ}$

$$
\begin{aligned}
34^{\circ}+m \angle Q P R+34^{\circ} & =180^{\circ} \\
m \angle Q P R+68^{\circ} & =180^{\circ}
\end{aligned}
$$

$$
m \angle Q P R=112^{\circ}
$$

40. $Q P=\frac{1}{2} \cdot Q S=\frac{1}{2}(10)=5$
41. $R P=Q P=5$
42. $m \angle P S T+m \angle P S R=90^{\circ}$

$$
\begin{aligned}
34^{\circ}+m \angle P S R & =90^{\circ} \\
m \angle P S R & =56^{\circ}
\end{aligned}
$$

$\sin (\angle P S R)=\frac{Q R}{Q S}$

$$
\sin 56^{\circ}=\frac{Q R}{10}
$$

$10\left(\sin 56^{\circ}\right)=Q R$

$$
8.3 \approx Q R
$$

43. $\sin (\angle P Q R)=\frac{R S}{Q S}$

$$
\begin{aligned}
\sin 34^{\circ} & =\frac{R S}{10} \\
10\left(\sin 34^{\circ}\right) & =R S \\
5.6 & \approx R S
\end{aligned}
$$

44. The diagonals are $\perp . m \angle M K N=90^{\circ}$.
45. Diagonals bisect opposite angles.
$m \angle L M K=\frac{1}{2} \cdot m \angle L M N=\frac{1}{2} \cdot 90^{\circ}=45^{\circ}$
46. Diagonals bisect opposite angles.
$m \angle L P K=\frac{1}{2} \cdot \angle L P N=\frac{1}{2} \cdot 90^{\circ}=45^{\circ}$
47. Diagonals bisect each other.
$K N=L K=1$
48. Diagonals have equal lengths.
$M P=2 \cdot L K=2 \cdot 1=2$
49. $\triangle L P N$ is a right triangle with side lengths x and hypotenuse $L N=2$. Using the Pythagorean Theorem:

$$
\begin{aligned}
x^{2}+x^{2} & =(L N)^{2} \\
2 x^{2} & =4 \\
x^{2} & =2 \\
x & =\sqrt{2}
\end{aligned}
$$

The length of $L P$ is $\sqrt{2}$.
50.

Slope of $\overline{J K}=\frac{3-2}{0-(-4)}=\frac{1}{4}$
Slope of $\overline{J M}=\frac{-2-2}{-3-(-4)}$
$=\frac{-4}{1}=-4$

Product of slopes $=\left(\frac{1}{4}\right)(-4)=-1$
$\overline{J K}=\sqrt{(0-4)^{2}+(3-2)^{2}}=\sqrt{17}$
$\overline{J M}=\sqrt{(-3-(-4))^{2}+(-2-2)^{2}}=\sqrt{17}$
Because $J K L M$ is a parallelogram, its opposite sides are congruent. So, $\overline{J K} \cong \overline{M L}$ and $\overline{J M} \cong \overline{K L}$. Because $\overline{J K} \cong \overline{J M}, \overline{J K} \cong \overline{M L} \cong \overline{J M} \cong \overline{K L} . \overline{J K}$ and $\overline{J M}$ are perpendicular lines because the product of their slopes is -1 . So, $m \angle K J M=90^{\circ}$. Because opposite angles of a parallelogram are congruent and consecutive angles are supplementary, all four angles are right angles. So, the parallelogram is a square. The perimeter of the square is four times one side length, or $4 \sqrt{ } 17$.
51.

Slope of $\overline{J K}=\frac{2-7}{7-(-2)}=\frac{-5}{9}$

$$
=-\frac{5}{9}
$$

Slope of $\overline{K L}=\frac{-3-2}{-2-7}=\frac{-5}{-9}$

$$
=\frac{5}{9}
$$

Product of slopes $=\left(-\frac{5}{9}\right)\left(\frac{5}{9}\right)=-\frac{25}{81} \neq-1$
$J K=\sqrt{(7-(-2))^{2}+(2-7)^{2}}=\sqrt{106}$
$K L=\sqrt{(-2-7)^{2}+(-3-2)^{2}}=\sqrt{106}$
Because $J K L M$ is a parallelogram, $\overline{J M} \cong \overline{K L}$ and $\overline{J K} \cong \overline{M L}$. Because $\overline{J K} \cong \overline{K L}, \overline{J M} \cong \overline{J K} \cong \overline{K L} \cong \overline{M L}$. $\overline{J K}$ and $\overline{K L}$ are not perpendicular because the product of their slopes is not -1 . So, there are not right angles. The parallelogram is a rhombus. The perimeter of the rhombus is four times one side length, or $4 \sqrt{106}$.
52. Not all rhombuses are similar. Two rhombuses do not have to have the same angle measures. All squares are similar. Their angle measures are 90°, and the ratio of the lengths of their sides are equal.
53.

Geometry

The diagonals of a rhombus bisect each other and intersect at a right angle. So, $m \angle A E B=m \angle A E D=$ $m \angle D E C=m \angle B E C=90^{\circ} . A E=C E=5$, and $D E=B E=8$.
$\triangle A B E$ is a right triangle. Use the Pythagorean Theorem to find $A B$.

$$
\begin{aligned}
(A B)^{2} & =(A E)^{2}+(B E)^{2} \\
(A B)^{2} & =5^{2}+8^{2} \\
A B & =\sqrt{89}
\end{aligned}
$$

$A B C D$ is a rhombus, so $A B=B C=C D=D A=\sqrt{89}$.
Because $\triangle A B E$ is a right triangle, use the inverse tangent ratio to find $m \angle E A B$.

$$
\begin{aligned}
& \tan (E A B)^{\circ}=\frac{\text { opp. }}{\text { adj. }}=\frac{8}{5}=1.6 \\
& \angle E A B=\tan ^{-1}(1.6) \approx 58^{\circ}
\end{aligned}
$$

Diagonals of a rhombus bisect congruent opposite angles, so $m \angle E A B=m \angle E A D=m \angle E C B=$ $m \angle E C D=58^{\circ}$. Use the fact that the sum of the measure of the interior angles of a triangle is 180° to find $m \angle E B A$.

$$
\begin{aligned}
m \angle E B A+m \angle E A B+m \angle A E B & =180^{\circ} \\
m \angle E B A+58^{\circ}+90^{\circ} & =180^{\circ} \\
m \angle E B A & =32^{\circ}
\end{aligned}
$$

Diagonals of a rhombus bisect congruent opposite angles, so $m \angle E B A=m \angle E B C=m \angle E D C=$ $m \angle E D A=32^{\circ}$.

Problem Solving

Copyright © Houghton Mifflin Harcourt Publishing Company. All rights reserved.
54. a. $H B D F$ is a rhombus because all four sides are congruent. $A C E G$ is a rectangle because all four angles are right angles.
b. Because $A C E G$ is a rectangle, the lengths of $\overline{A E}$ and $\overline{G C}$ are congruent. The lengths of $\overline{A J}, \overline{J E}, \overline{C J}$, and $\overline{J G}$ are congruent because the diagonals of a rectangle bisect each other.
55. You can measure the diagonals of the square. If the diagonals are the same length, the quadrilateral patio is a square.
56. $A B C D$ is a rhombus so $\overline{A B} \cong \overline{B C} . A B C D$ is a parallelogram so its diagonals $\overline{A C}$ and $\overline{B D}$ bisect each other. So, $\overline{A X} \cong \overline{C X}$ and $\overline{B X} \cong \overline{B X}$. The SSS Congruence Postulate then proves that $\triangle A X B \cong \triangle C X B$. Because correspnding parts of congruent triangles are congruent, $\angle A X B \cong \angle C X B$. Because $\overline{A C}$ and $\overline{B D}$ intersect to form congruent adjacent angles, $\overline{A C} \perp \overline{B D}$.
57. If a quadrilateral is a rhombus, then it has four congruent sides. The conditional statement is true because a rhombus is a parallelogram with four congruent sides. If a quadrilateral has four congruent sides, then it is rhombus. The converse is true because a quadrilateral with four congruent sides is also a parallelogram with four congruent sides making it a rhombus.
58. If a quadrilateral is a rectangle, then it has four right angles. The conditional statement is true by the definition of a rectangle.

If a quadrilateral has four right angles, then it is a rectangle. The converse is true because both pairs of opposite angles are congruent, so the rectangle is a parallelogram. A parallelogram with 4 right angles is a rectangle.
59. If a quadrilateral is a square, then it is a rhombus and a rectangle. The conditional statement is true because a square is a parallelogram with four right angles (so it is a rectangle) and four congruent sides (so it is a rhombus).
If a quadrilateral is a rhombus and a rectangle, then it is a square. The converse is true because a rhombus has four congruent sides and a rectangle has four right angles. By definition, a parallelogram that has four congruent sides and four right angles is a square.
60.

Statements	Reasons
1. $P Q R S$ is a parallelogram, $\overline{P R}$ bisects $\angle S P Q$ and $\angle Q R S, \overline{S Q}$ bisects $\angle P S R$ and $\angle R Q P$.	1. Given
2. $\begin{aligned} & \angle Q P T \cong \angle S P T \\ & \angle P S T \cong \angle R S T \\ & \angle S R T \cong \angle Q R T \\ & \angle R Q T \cong \angle P Q T \end{aligned}$	2. Definition of angle bisector
3. $\overline{P R} \cong \overline{P R}, \overline{Q S} \cong \overline{Q S}$	3. Reflexive Property of Congruence
4. $\begin{aligned} & \triangle P R Q \cong \triangle P R S \\ & \triangle P Q S \cong \triangle R Q S \end{aligned}$	4. ASA Congruence Postulate
$\text { 5. } \begin{aligned} & \overline{R S} \cong \overline{R Q}, \overline{P Q} \cong \overline{R Q} \\ & \overline{S R} \cong \overline{P S}, \overline{P Q} \cong \overline{P S} \end{aligned}$	5. Corresponding parts of congruent triangles are congruent.
6. $\overline{P Q} \cong \overline{R Q} \cong \overline{S R} \cong \overline{P S}$	6. Transitive Property of Congruence
7. $P Q R S$ is a rhombus.	7. Definition of a rhombus

61.

Statements	Reasons
1. $W X Y Z$ is a rhombus.	1. Given
2. $\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W}$	2. A quadrilateral is a rhombus if and only if it has four congruent sides.
3. $\overline{W Y} \cong \overline{W Y}, \overline{X Z} \cong \overline{X Z}$	3. Reflexive Property of Congruence

4. $\triangle W Y X \cong \triangle W Y Z$ $\triangle W Z X \cong \triangle Y Z X$
5. $\angle Z W Y \cong \angle X W Y$
$\angle Z Y W \cong \angle X Y W$
$\angle W Z X \cong \angle Y Z X$
$\angle W X Z \cong \angle Y X Z$
6. $\overline{W Y}$ bisects $\angle Z W X$ and $\angle X Y Z ; \overline{Z X}$ bisects $\angle W Z Y$ and $\angle Y X W$.
7. Given
8. A quadrilateral is a rhombus if and only if it has four congruent sides.
9. Reflexive Property of Congruence
10. SSS Congruence Postulate
11. Corresponding parts of congruent triangles are congruent.
12. Definition of an angle bisector
13. a. It is given that $\overline{A B} \| \overline{C D}$ and $\overline{D B}$ bisects $\angle A D C$. $\angle A B D \cong \angle C D B$ using the Alternate Interior Angles Theorem. Because $\angle A B D \cong \angle C D B$ and $\angle A D B \cong \angle C D B, \angle A B D \cong \angle A D B$ using the Transitive Property of Congruence. $\overline{A B} \cong \overline{A D}$ using the Converse of Base Angles Theorem.
b. If $\overline{A D} \| \overline{B C}$, then the quadrilateral is a parallelogram by definition. Using the fact that opposite sides of a parallelogram are congruent along with the fact that $\overline{A B} \cong \overline{A D}$ means all four sides of the parallelogram are congruent. So, $A B C D$ is a rhombus.
14. Sample answer: Let rectangle $A B C D$ have vertices $(0,0)$, $(a, 0),(a, b)$, and $(0, b)$, respectively. The diagonal $\overline{A C}$ has a length of $\sqrt{a^{2}+b^{2}}$ and diagonal $\overline{B D}$ has a length of $\sqrt{a^{2}+b^{2}}$. So, $A C=B D=\sqrt{a^{2}+b^{2}}$.
15. The diagonals of a \square bisect each other. So, $O D=O G$ and $O H=O F . O D+O G=D G$ and $O H+O F=H F$ the $O D+O G=O H+O F$ by substitution. $O D+O D=O H+O H$ and $O G+O G=O F+O F$ again by substitution giving $O D=O H$ and $O G=O F$. By the Transitive Property of Congruence,
$O D=O F=O G=O H$.
Find the y-coordinate of point D.
$O F=\sqrt{(0-b)^{2}+(0-0)^{2}}=\sqrt{b^{2}}=b$
Because $O F=O D, O D=b$. Let $D=(a, y)$.

$$
\begin{aligned}
& b=\sqrt{(a-0)^{2}+(y-0)^{2}} \\
& b=\sqrt{a^{2}+y^{2}} \\
& b^{2}=a^{2}+y^{2} \\
& b^{2}-a^{2}=y^{2} \\
& \sqrt{b^{2}-a^{2}}=y \\
& D\left(a, \sqrt{b^{2}-a^{2}}\right)
\end{aligned}
$$

Find the coordinates of H and G.
Because $O F=O H, O H=b$, and $O H$ lies on the x-axis, $H=(-b, 0)$. Because $O D=O G, O G=b$, and G is in quadrant III, the coordinates must be negative. So, $G=\left(-a,-\sqrt{b^{2}-a^{2}}\right)$.
Find and compare the slopes $\overline{O F}$ and $\overline{G F}$.
Slope of $\overline{D F}=\frac{\sqrt{b^{2}-a^{2}}-0}{a-b}=\frac{\sqrt{b^{2}-a^{2}}}{a-b}$
Slope of $\overline{G F}=\frac{-\sqrt{b^{2}-a^{2}-0}}{-a-b}=\frac{\sqrt{b^{2}-a^{2}}}{a+b}$
Product of slopes of $\overline{D F}$ and $\overline{G F}=\frac{\sqrt{b^{2}-a^{2}}}{a-b} \cdot \frac{\sqrt{b^{2}-a^{2}}}{a+b}$

$$
\begin{aligned}
& =\frac{b^{2}-a^{2}}{(a-b)(a+b)} \\
& =\frac{(b+a)(b-a)}{(a-b)(a+b)} \\
& =\frac{(b-a)}{(a-b)} \\
& =\frac{(-1)(a-b)}{a-b}=-1
\end{aligned}
$$

So, $\overline{D F} \perp \overline{G F}$.
Find and compare the slopes of $\overline{D H}$ and $\overline{G H}$.

Slope of $\overline{D H}=\frac{\sqrt{b^{2}-a^{2}}-0}{a-(-b)}=\frac{\sqrt{b^{2}-a^{2}}}{a+b}$
Slope of $\overline{G H}=\frac{-\sqrt{b^{2}-a^{2}-0}}{-a-(-b)}=\frac{\sqrt{b^{2}-a^{2}}}{a-b}$
Product of slopes of $\overline{D H}$ and $\overline{G H}=\frac{\sqrt{b^{2}-a^{2}}}{a+b} \cdot \frac{\sqrt{b^{2}-a^{2}}}{a-b}$
$=\frac{b^{2}-a^{2}}{(a+b)(a-b)}$
$=\frac{(b+a)(b-a)}{(a+b)(a-b)}$
$=\frac{(b-a)}{(a-b)}$

$$
=\frac{(-1)(a-b)}{a-b}=-1
$$

So, $\overline{D H} \perp \overline{G H}$. $A B C D$ is a parallelogram with four right angles, or it is a rectangle.

Quiz for the lessons "Show that a Quadrilateral is a Parallelogram" and "Properties of Rhombuses, Rectangles, and Squares"

1. $5 x+3=7 x-5$
$-2 x=-8$
$x=4$
2. $(3 x-13)^{\circ}=(x+19)^{\circ}$
$2 x=32$
$x=16$
3. $3 x=5 x-48$
$-2 x=-48$
$x=24$
4. Because the diagonals are perpendicular and bisect each other, the quadrilateral is a rhombus and a rectangle. So, the quadrilateral is a square.
5. The quadrilateral is a rhombus because a parallelogram is a rhombus iff each diagonal bisects opposite angles.
6. The quadrilateral has four right angles. The quadrilateral is a rectangle.

Lesson 8.5 Use Properties of Trapezoids and Kites

Investigating Geometry Activity for the lesson "Use Properties of Trapezoids and Kites"

STEP 5
The length of $E F$ is always equal to $\frac{A B+D C}{2}$.

1. The length of the midsegment of a trapezoid is always equal to one-half the sum of the lengths of the two parallel sides.
2. If the midsegment is equidistant from each side at two points, it must be parallel to both.
3. It divides two sides of the polygon into congruent segments. The length of the midsegment of a triangle is half of the length of the side parallel to it. The length of the midsegment of a trapezoid is one-half the sum of the lengths of the two parallel sides.

Geometry

Guided Practice for the lesson "Use Properties of Trapezoids and Kites"

1. Slope of $\overline{R S}=\frac{5-3}{4-0}=\frac{2}{4}=\frac{1}{2}$

Slope of $\overline{O T}=\frac{2-0}{4-0}=\frac{2}{4}=\frac{1}{2}$
The slopes of $\overline{R S}$ and $\overline{O T}$ are the same, so $\overline{R S} \| \overline{O T}$.
Slope of $\overline{S T}=\frac{2-5}{4-4}=\frac{3}{0}$, which is undefined
Slope of $\overline{O R}=\frac{3-0}{0-0}=\frac{3}{0}$, which is undefined
The slopes of $\overline{S T}$ and $\overline{O R}$ are the same, so $\overline{S T} \| \overline{O R}$.
Because both pairs of opposite sides are parallel, quadrilateral $O R S T$ is a parallelogram.
2. $\angle R$ and $\angle O$ and $\angle S$ and $\angle T$ are supplementary angles by the Consecutive Interior Angles Theorem.
3. A trapezoid is isosceles if its diagonals are congruent.
4. By the Consecutive Interior Angles Theorem, $m \angle E F G+m \angle F G H=180^{\circ}$. $m \angle E F G=180^{\circ}-110^{\circ}=70^{\circ}$. Because the base angles are congruent, trapezoid $E F G H$ is isosceles.
5.

$N P=\frac{J K+M L}{2}$
$12=\frac{9+M L}{2}$
$24=9+M L$
$15=M L$
The length of $\overline{N P}$ is one half the sum of the two parallel sides. So the length of $\overline{M L}$ is 15 cm .
6. $3 x^{\circ}+75^{\circ}+90^{\circ}+120^{\circ}=360^{\circ}$

$$
\begin{aligned}
3 x+285 & =360 \\
3 x & =75 \\
x & =25
\end{aligned}
$$

The value of x is 25 , so $(3 x)^{\circ}$ is 75°. The congruent angles are both 75°.

Exercises for the lesson "Use Properties of Trapezoids and Kites"

Skill Practice

1.

The bases are sides $\overline{P Q}$ and $\overline{R S}$. The nonparallel sides $\overline{P S}$ and $\overline{Q R}$ are the legs of the trapezoid.
2. A trapezoid has exactly one pair of parallel sides and at most one pair of congruent opposite sides.
A kite has two pairs of consecutive congruent sides and one pair of opposite congruent angles.
3. Slope of $\overline{A B}=\frac{4-4}{4-0}=\frac{0}{4}=0$

Slope of $\overline{C D}=\frac{1-(-2)}{2-8}=\frac{-3}{6}=-\frac{1}{2}$
The slopes of $\overline{A B}$ and $\overline{C D}$ are not the same, so $\overline{A B}$ is not parallel to $\overline{C D}$.
Slope of $\overline{B C}=\frac{-2-4}{8-4}=\frac{-6}{4}=-\frac{3}{2}$
Slope of $\overline{D A}=\frac{4-1}{0-2}=-\frac{3}{2}$
The slopes of $\overline{B C}$ and $\overline{D A}$ are the same, so $\overline{B C} \| \overline{D A}$.
Quadrilateral $A B C D$ has exactly one pair of parallel sides. $A B C D$ is a trapezoid.
4. Slope of $\overline{A B}=\frac{3-0}{2-(-5)}=\frac{3}{7}$

Slope of $\overline{C D}=\frac{-2-1}{-2-3}=\frac{-3}{-5}=\frac{3}{5}$
The slopes of $\overline{A B}$ and $\overline{C D}$ are not the same, so $\overline{A B}$ is not parallel to $\overline{C D}$.
Slope of $\overline{B C}=\frac{1-3}{3-2}=\frac{-2}{1}=-2$
Slope of $\overline{D A}=\frac{0-(-2)}{-5-(-2)}=-\frac{2}{3}$
The slopes of $\overline{B C}$ and $\overline{D A}$ are not the same, so $\overline{B C}$ is not parallel to $\overline{D A}$.
The quadrilateral $A B C D$ is not a trapezoid because it does not have exactly one pair of parallel sides.
5. Slope of $\overline{A B}=\frac{1-1}{6-2}=\frac{0}{4}=0$

Slope of $\overline{C D}=\frac{-4-(-3)}{-1-3}=\frac{-1}{-4}=\frac{1}{4}$
The slopes of $\overline{A B}$ and $\overline{C D}$ are not the same, so $\overline{A B}$ is not parallel to $\overline{C D}$.
Slope of $\overline{B C}=\frac{-3-1}{3-6}=\frac{-4}{-3}=\frac{4}{3}$
Slope of $\overline{D A}=\frac{1-(-4)}{2-(-1)}=\frac{5}{3}$
The slopes of $\overline{B C}$ and $\overline{D A}$ are not the same, so $\overline{B C}$ is not parallel to $\overline{D A}$.
The quadrilateral $A B C D$ is not a trapezoid because it does not have exactly one pair of parallel sides.
6. Slope of $\overline{A B}=\frac{1-3}{-1(-3)}=\frac{-2}{2}=-1$

Slope of $\overline{C D}=\frac{0-1}{-3-(-4)}=\frac{-1}{1}=-1$
The slopes of $\overline{A B}$ and $\overline{C D}$ are the same, so $\overline{A B} \| \overline{C D}$.
Slope of $\overline{B C}=\frac{-4-1}{1-(-1)}=\frac{-5}{2}=-\frac{5}{2}$
Slope of $\overline{D A}=\frac{0-3}{-3-(-3)}=\frac{-3}{0}$, which is undefined

The slopes of $\overline{B C}$ and $\overline{D A}$ are not the same, so $\overline{B C}$ is not parallel to $\overline{D A}$.
The quadrilateral $A B C D$ has exactly one pair of parallel sides. $A B C D$ is a trapezoid.
7. $m \angle L=m \angle K=50^{\circ}, m \angle J=180^{\circ}-50^{\circ}=130^{\circ}$, $m \angle M=m \angle J=130^{\circ}$
8. $m \angle L=m \angle K=100^{\circ}, m \angle J=180^{\circ}-100^{\circ}=80^{\circ}$, $m \angle M=m \angle J=80^{\circ}$
9. $m \angle J=m \angle K=118^{\circ}, m \angle L=180^{\circ}-118^{\circ}=62^{\circ}$, $m \angle M=m \angle L=62^{\circ}$
10. Both pairs of base angles are congruent, so the quadrilateral is an isoceles trapezoid by Theorem 8.14.
11. Because there are exactly two right angles, there is exactly one pair of parallel sides. So, the quadrilateral is a trapezoid.
12. Not a trapezoid; $\angle J$ and $\angle M$, and $\angle K$ and $\angle L$ are supplementary by the Consecutive Interior Angles Theorem. Because both pairs of opposite angles are congruent, $J K L M$ is a parallelogram.
13. $M N=\frac{1}{2}(10+18)=\frac{1}{2}(28)=14$
14. $M N=\frac{1}{2}(21+25)=\frac{1}{2}(46)=23$
15. $M N=\frac{1}{2}(57+76)=\frac{1}{2}(133)=66.5$
16. D; Not all trapezoids are isosceles. So the legs of a trapezoid are not always congruent.
17. There is only one pair of congruent opposite angles in a kite. These angles are the two that join the non-congruent sides. So, $m \angle A=360^{\circ}-120^{\circ}-120^{\circ}-50^{\circ}=70^{\circ}$.
18. $m \angle E+m \angle G+m \angle H+m \angle F=360^{\circ}$

$$
\begin{aligned}
m \angle G+m \angle G+100^{\circ}+140^{\circ} & =360^{\circ} \\
2(m \angle G)+140^{\circ} & =360^{\circ} \\
m \angle G & =110^{\circ}
\end{aligned}
$$

19. $m \angle G+m \angle F+m \angle H+m \angle E=360^{\circ}$

$$
\begin{aligned}
m \angle G+110^{\circ}+110^{\circ}+60^{\circ} & =360^{\circ} \\
m \angle G+280^{\circ} & =360^{\circ} \\
m \angle G & =80^{\circ}
\end{aligned}
$$

20. $m \angle E+m \angle G+m \angle F+m \angle H=360^{\circ}$

$$
\begin{aligned}
m \angle G+m \angle G+150^{\circ}+90^{\circ} & =360^{\circ} \\
2(m \angle G)+240^{\circ} & =360^{\circ} \\
m \angle G & =60^{\circ}
\end{aligned}
$$

21. $X Y=W X=\sqrt{3^{2}+3^{2}}=\sqrt{18}=3 \sqrt{2}$
$W Z=Y Z=\sqrt{3^{2}+5^{2}}=\sqrt{34}$
22. $W Z=W X=\sqrt{4^{2}+6^{2}}=\sqrt{52}=2 \sqrt{13}$
$X Y=Y Z=\sqrt{6^{2}+12^{2}}=\sqrt{180}=6 \sqrt{5}$
23. $W X=W Z=\sqrt{19^{2}+10^{2}}=\sqrt{461}$
$X Y=Y Z=\sqrt{5^{2}+10^{2}}=\sqrt{125}=5 \sqrt{5}$
24. The length of the midsegment of a trapezoid is not the difference in lengths of the two parallel sides. It is one-half the sum of the two parallel sides.
$M N=\frac{1}{2}(D C+A B)$

$$
8=\frac{1}{2}(D C+14)
$$

$16=D C+14$
$2=D C$
25. $7=\frac{1}{2}(2 x+10)$
$14=2 x+10$
$4=2 x$
$2=x$
26. $12.5=\frac{1}{2}[(3 x+1)+15]$
$25=3 x+16$
$9=3 x$
$3=x$
27. $18.7=\frac{1}{2}[5 x+(12 x-1.7)]$
$37.4=17 x-1.7$
$39.1=17 x$
$2.3=x$
28.

$$
\begin{aligned}
& M P=\sqrt{(3-(-3))^{2}+(-1-5)^{2}}=\sqrt{72}=6 \sqrt{2} \\
& N Q=\sqrt{(-1-(-5))^{2}+(5-(-1))^{2}}=\sqrt{52}=2 \sqrt{13}
\end{aligned}
$$

The lengths of the diagonals $\overline{M P}$ and $\overline{N Q}$ are not congruent, so trapezoid $M N P Q$ is not isosceles.
29.

$X Y=\frac{1}{2}(J K+L M)$
$37=\frac{1}{2}(17+x)$
$74=17+x$
$57=x$
The length of $\overline{L M}$ is 57 .
31. A; $R S: P Q=5: 1$

$$
\begin{aligned}
M N & =\frac{1}{2}(R S+P Q) \\
& =\frac{1}{2}(5 P Q+P Q) \\
& =\frac{1}{2}(6 P Q) \\
& =3 P Q
\end{aligned}
$$

Geometry

32. $7 x-6=\frac{1}{2}\left(36+x^{2}\right)$

$$
\begin{aligned}
& 14 x-12=36+x^{2} \\
& 0=x^{2}-14 x+48 \\
& 0=(x-6)(x-8) \\
& x-6=0 \quad \text { or } \quad x-8=0 \\
& x=6 \quad \text { or } \quad x=8
\end{aligned}
$$

The possible values of x are 6 and 8 .

$$
\begin{array}{rlrl}
\text { If } x=6: & & \text { If } x=8: \\
\text { midsegment } & =7 x-6 & & \text { midsegment }
\end{array}=7 x-60 \text { (} \begin{array}{rlrl}
& =7(8)-6 \\
& =7(6)-6 & & \\
& =36 & &
\end{array}
$$

If $x=6$, the length of either base and of the midsegment is 36 . So, $x=6$ is rejected. The length of the midsegment is 50 .
33. Sample answer: A kite or a quadrilateral that is not a parallelogram or a trapezoid will not have a pair of opposite sides parallel. So, no consecutive angles are supplementary. So, the measure of an interior angle could be greater than 180°.

Problem Solving

34. $H C=\frac{1}{2}(A B+G D)=\frac{1}{2}(13.9+50.5)=\frac{1}{2}(64.4)=32.2$
$G D=\frac{1}{2}(H C+F E)$
$50.5=\frac{1}{2}(32.2+F E)$
$101=32.2+F E$
$68.8=F E$
The length of $H C$ is 32.2 centimeters and the length of $F E$ is 68.8 centimeters.
35. Sample answer:

36. a. The quadrilaterals are a kite and a trapezoid.
b. The length of $\overline{B F}$ increases. $m \angle B A F$ and $m \angle B C F$ both increase. $m \angle A B C$ and $m \angle C F A$ both decrease.
c. $m \angle D E F=m \angle C F E=65^{\circ}$,
$m \angle F C D=180^{\circ}-65^{\circ}=115^{\circ}$,
$m \angle C D E=m \angle F C D=115^{\circ}$
The trapezoid is isosceles, so both pairs of base angles are congruent.
37.

Statements	Reasons	
1. $A B C D$ is an isosceles trapezoid with $\overline{A B} \cong \overline{C D}$ and $B C \\| A D$.	1. Given	
2. $\overline{E C} \\| \overline{A B}$	2. Given	
3. $A B C D$ is a \square.	3. Definition of a parallelogram	
4. $\overline{A B} \cong \overline{C E}$	4. Opposite sides of a \square are \cong.	

5. Transitive Property of \angle Congruence
6. Definition of isosceles triangle
7. Base Angles Theorem
8. Corresponding Angles Congruence Postulate
9. Transitive Property of Equality
10. Consecutive Interior Angles Theorem
11. Transitive Property of \angle Equality
12. Substitution Property of Equality
13. Substitution Property of Equality
14. Definition of \angle Congruence
15.

Statements
 1. $E F G H$ is a trapezoid, $\overline{F G} \| \overline{E H}, \angle E \cong \angle H$, $\overline{J G} \| \overline{E F}$

2. $E F G J$ is a parallelogram.
3. $\overline{E F} \cong \overline{J G}$
4. $\angle F E J \cong \angle G J H$
5. $\triangle G J H$ is isosceles.
6. $\overline{J G} \cong \overline{G H}$
7. $\overline{E F} \cong G H$
8. $E F G H$ is an isosceles trapezoid.

Reasons

1. Given
2. Definition of a parallelogram
3. Opposite sides in a parallelogram are congruent.
4. Corresponding Angles Postulate
5. Converse of the Base Angles Theorem
6. Base Angles Theorem
7. Transitive Property of Congruence
8. Definition of an isosceles trapezoid
9.

Statements	Reasons	
1. $J K L M$ is an isosceles trapezoid, $\overline{K L} \\| \overline{J M}$. $\overline{J K} \cong \overline{L M}$	1. Given	
2. $\angle J K L \cong \angle M L K$	2. Base angles in an isosceles trapezoid are congruent. 3. Reflexive Property of Congruence	
3. $\overline{K L} \cong \overline{K L}$	4. SAS Congruence Postulate	
5. $\overline{J L} \cong \overline{K M}$	5. Corresponding parts of congruent triangles are congruent	

40. By the Midsegment Theorem, $B G=\frac{1}{2} C D$ and $G E=\frac{1}{2} A F . B G+G E=\frac{1}{2} C D+\frac{1}{2} A F$, which implies $B E=\frac{C D+A F}{2}$. The midsegment $\overline{B E}$ is parallel to $\overline{C D}$ and $\overline{A F}$ because $\overline{B E}, \overline{B G}$, and $\overline{G E}$ all lie on the same line.
41.

Statements	Reasons
1. $\overline{A B} \cong \overline{C B}, \overline{A D} \cong \overline{C D}$	1. Given
2. $\overline{B D} \cong \overline{B D}$	2. Reflexive Property of Congruence

3. $\triangle B C D \cong \triangle B A D$
4. $\angle C B E \cong \angle A B E$
5. $\overline{B E} \cong B E$
6. $\triangle B A E \cong \triangle B C E$
7. $\angle B E C \cong \angle B E A$
8. $\angle B E C$ and $\angle B E A$ are a linear pair.
9. $\overline{A C} \perp \overline{B D}$
10. If the diagonals of a trapezoid are congruent, then the trapezoid is isosceles. It is given that $J K L M$ is a trapezoid with $\overline{K M} \cong \overline{J L}$. Draw $\overline{K P}$ perpendicular to $\overline{J M}$ at point P and draw $\overline{L Q}$ perpendicular to $\overline{J M}$ at point Q. Because $\triangle L Q J$ and $\triangle K P M$ are right triangles, they are congruent by the HL Congruence Theorem. Using corresponding parts of congruent triangles are congruent, $\angle L J M \cong$ $\angle K M J$. Using the Reflexive Property of Congruence, $\overline{J M} \cong \overline{J M} . \triangle L J M \cong \triangle K M J$ by the SAS Congruence Postulate. Using corresponding parts of congruent triangles are congruent, $\overline{K J} \cong \overline{L M}$. So, trapezoid $J K L M$ is isosceles.

Lesson Identify Special Quadrilaterals

Guided Practice for the lesson "Identify Special Quadrilaterals"

1. Parallelogram, rectangle: Both pairs of opposite sides are congruent.
Rhombus, square: All sides are congruent.
Trapezoid: One pair of opposite sides are congruent.
2. kite; There are two pairs of consecutive congruent sides.
3. trapezoid; There is exactly one pair of parallel sides. Because the diagonals do not bisect each, it is not a parallelogram.
4. quadrilateral; There are no parallel sides, one pair of congruent sides and one bisected diagonal. Not enough information to further classify the quadrilateral.
5. It is possible that $M N P Q$ could be a rectangle or a square because you don't know the relationship between $\overline{M Q}$ and $\overline{N P}$.

Exercises for the lesson "Identify Special Quadrilaterals"

Skill Practice

1. A quadrilateral that has exactly one pair of parallel sides and diagonals that are congruent is an isosceles trapezoid.
2. You can prove all four sides of the parallelogram are congruent. You can also prove that the diagonals of the parallelogram are perpendicular. Proving the diagonals bisect opposite angles can also show that the parallelogram is a rhombus.

Property	\square	Rectangle	Rhombus	
3. All sides are \cong.			X	
4. Both pairs of opp. sides are \cong.	X	X	X	
5. Both pairs of opp. sides are $\\|$.	X	X	X	
6. Exactly 1 pair of opp. sides are $\\|$.				
7. All \measuredangle are \cong.		X		

Geometry

8. Exactly 1 pair of opp. $\angle \mathrm{s}$ are \cong.			
9. Diagonals are \perp.			X
10. Diagonals are \cong.		X	
11. Diagonals bisect each other.	X	X	X

Property	Square	Kite	Trapezoid	
3. All sides are \cong.	X			
4. Both pairs of opp. sides are \cong.	X			
5. Both pairs of opp. sides are $\\|$.	X			
6. Exactly 1 pair of opp. sides are $\\|$.			X	
7. All \measuredangle are \cong.	X			
8. Exactly 1 pair of opp. $\angle s$ are \cong.		X		
9. Diagonals are \perp.	X	X		
10. Diagonals are \cong.	X			
11. Diagonals bisect each other.	X			

12. Because $\angle D$ and $\angle C$ are not supplementary, $\overline{A D}$ is not parallel to $\overline{B C}$. So, $A B C D$ is not a parallelogram. Because $m \angle A=121^{\circ}, A B C D$ is not a kite. $A B C D$ is a trapezoid because $\overline{A B} \| \overline{C D}$.
13. A; Rectangle
14. Because all 4 angles are right angles, the quadrilateral is a rectangle.
15. $\overline{P S} \perp \overline{S R}$ and $\overline{Q R} \perp \overline{S R}$ so $\overline{P S} \| \overline{Q R}$. Because there is exactly one pair of parallel sides, the quadrilateral is a trapezoid.
16. There are two sets of consecutive congruent sides, so the quadrilateral is a kite.
17.

Isosceles trapezoid; An isosceles trapezoid has exactly one pair of congruent sides and congruent diagonals.
$R S=\sqrt{(3-6)^{2}+(0-5)^{2}}=\sqrt{(-3)^{2}+(-5)^{2}}=\sqrt{34}$
$P S=\sqrt{(1-3)^{2}+(0-0)^{2}}=\sqrt{(-2)^{2}}=2$
Kite; $\overline{P Q} \cong \overline{P S}$ and $\overline{Q R} \cong \overline{R S}$
22. Slope of $\overline{P Q}=\frac{1-1}{6-2}=\frac{0}{4}=0$

Slope of $\overline{Q R}=\frac{8-1}{5-6}=\frac{7}{-1}=-7$
Slope of $\overline{R S}=\frac{8-8}{3-5}=\frac{0}{-2}=0$
Slope of $\overline{P S}=\frac{8-1}{3-2}=\frac{7}{1}=7$
$P Q=\sqrt{(6-2)^{2}+(1-1)^{2}}=\sqrt{16}=4$
$Q R=\sqrt{(5-6)^{2}+(8-1)^{2}}$

$$
=\sqrt{(-1)^{2}+7^{2}}=\sqrt{50}=5 \sqrt{2}
$$

$R S=\sqrt{(3-5)^{2}+(8-8)^{2}}=\sqrt{4}=2$
$P S=\sqrt{(3-2)^{2}+(8-1)^{2}}=\sqrt{1^{2}+7^{2}}=\sqrt{50}=5 \sqrt{2}$
Isosceles trapezoid; $\overline{P Q} \| \overline{R S}$, and $\overline{Q R}$ and $\overline{P S}$ are congruent but not parallel.
23. $P Q=\sqrt{(6-2)^{2}+(9-7)^{2}}=\sqrt{4^{2}+2^{2}}=\sqrt{20}=2 \sqrt{5}$
$Q R=\sqrt{(9-6)^{2}+(3-9)^{2}}$

$$
=\sqrt{3^{2}+(-6)^{2}}=\sqrt{45}=3 \sqrt{5}
$$

$R S=\sqrt{(5-9)^{2}+(1-3)^{2}}$
$=\sqrt{(-4)^{2}+(-2)^{2}}=\sqrt{20}=2 \sqrt{5}$
$S P=\sqrt{(2-5)^{2}+(7-1)^{2}}$
$=\sqrt{(-3)^{2}+6^{2}}=\sqrt{45}=3 \sqrt{5}$
$P R=\sqrt{(9-2)^{2}+(3-7)^{2}}=\sqrt{7^{2}+(-4)^{2}}=\sqrt{65}$
$Q S=\sqrt{(5-6)^{2}+(1-9)^{2}}=\sqrt{(-1)^{2}+(-8)^{2}}=\sqrt{65}$
Rectangle; because both pairs of opposite sides and diagonals are congruent, $P Q R S$ is a rectangle.
24. $P Q=\sqrt{(5-1)^{2}+(8-7)^{2}}=\sqrt{4^{2}+1^{2}}=\sqrt{17}$
$Q R=\sqrt{(6-5)^{2}+(2-8)^{2}}=\sqrt{1^{2}+(-6)^{2}}=\sqrt{37}$
$R S=\sqrt{(2-6)^{2}+(1-2)^{2}}=\sqrt{(-4)^{2}+(-1)^{2}}=\sqrt{17}$
$S P=\sqrt{(1-2)^{2}+(7-1)^{2}}=\sqrt{(-1)^{2}+6^{2}}=\sqrt{37}$
$P R=\sqrt{(6-1)^{2}+(2-7)^{2}}$
$=\sqrt{5^{2}+(-5)^{2}}=\sqrt{50}=5 \sqrt{2}$
$Q S=\sqrt{(5-2)^{2}+(8-1)^{2}}=\sqrt{3^{2}+7^{2}}=\sqrt{58}$
Parallelogram; both pairs of opposite sides are congruent. Because the diagonals are not congruent, $P Q R S$ is a parallelogram.
18. No; squares, rhombuses, rectangles, and kites all have perpendicular diagonals.
19. No; because $m \angle F=109^{\circ}, \angle E$ is not congruent to $\angle F$. So, $E F G H$ is not an isosceles trapezoid.
20. No; it is not known whether the diagonals are perpendicular or whether all four side lengths are equal. So, the quadrilateral can only be classified as a rectangle.
21. $P Q=\sqrt{(1-1)^{2}+(2-0)^{2}}=\sqrt{4}=2$ $Q R=\sqrt{(6-1)^{2}+(5-2)^{2}}=\sqrt{5^{2}+3^{2}}=\sqrt{34}$
25. a. Rhombus, square, kite
b. Parallelogram, rectangle, trapezoid; two consecutive pairs of sides are always congruent and one pair of opposite angles remain congruent.
26. Show any two consecutive sides are congruent.

Sample answer: $\overline{A B} \cong \overline{B C}$
27. Show $\angle B \cong \angle A$ or $\angle C \cong \angle D$ and $\overline{A B} \| \overline{C D}$.
28. Show $\overline{D V} \cong \overline{B U}$. So, diagonals bisect each other.
29. No; if $m \angle J K L=m \angle K J M=90^{\circ}$, $J K L M$ would be a rectangle.
30. Yes; $J K L M$ has one pair of parallel sides and a pair of congruent base angles. By Theorem 8.15, JKLM is an isosceles trapezoid.
31. Yes; $J K L M$ has one pair of non-congruent parallel sides with congruent diagonals. By Theorem 8.16, JKLM is an isosceles trapezoid.
32.

Square; when the rectanlge's angles are bisected, the resulting angle measures are 45°. The triangles created all have angle measures $45^{\circ}-45^{\circ}-90^{\circ}$ and are similar. So, the quadrilateral has four right angles since each is one of a pair of vertical angles where the other angle is a right angle. Pairs of angle bisectors are parallel since they are perpendicular to the same line (one of the other angle bisectors). Therefore, the quadrilateral is a parallelogram, making its opposite sides congruent. Consecutive sides of the quadrilateral can be shown congruent using congruent triangles and the Subtraction Property of Equality. Therefore, the quadrilateral has four congruent sides and four right angles, which makes it a square.

Problem Solving

33. There is exactly one pair of parallel sides. So, the quadrilateral is a trapezoid.
34. There is exactly one pair of opposite congruent angles and two pairs of consecutive congruent sides. So, the quadrilateral is a kite.
35. Both pairs of opposite sides are congruent. So, the quadrilateral is a parallelogram.
36. a. There is only one pair of parallel sides. So, this part of the pyramid is a trapezoid.
b. There are two pairs of parallel sides and 4 congruent angles. So, this part of the pyramid is a rectangle.
37. The consecutive angles of a parallelogram are supplementary. If one angle is a right angle, then each interior angle is 90°. So, the parallelogram is a rectangle by definition.
38.

Because the diagonals bisect each other, $A B C D$ is a parallelogram. The diagonals are congruent, so $A B C D$ is a square or a rectangle. Because the diagonals are not perpendicular, $A B C D$ is a rectangle.
b.

Because the diagonals bisect each other, $A B C D$ is a parallelogram. The diagonals are perpendicular, so the quadrilateral is a square or a rhombus. Because the diagonals are not congruent, $A B C D$ is a rhombus.
39. a. $\overline{Q V} \cong \overline{U V} \cong \overline{R S} \cong \overline{S T}$ and $\angle V \cong \angle S$ because all sides and all interior angles of a regular hexagon are congruent. So, $\triangle Q V U$ and $\triangle R S T$ are isosceles. By the SAS Congruence Postulate, $\triangle Q V U \cong \triangle R S T$.
b. All sides in a regular hexagon are congruent, so $\overline{Q R}=\overline{U T}$. Because corresponding parts of congruent triangles are congruent, $\overline{Q U} \cong \overline{R T}$.
c. Because $\angle Q \cong \angle R \cong \angle T \cong \angle U$ and $\angle V U Q \cong \angle V Q U \cong \angle S T R \cong \angle S R T$, $\angle U Q R \cong \angle Q R T \cong \angle R T U \cong \angle T U Q$ by the Angle Addition Postulate.
The measure of each interior angle of a regular hexagon is $\frac{(n-2) \cdot 180}{6}=\frac{(6-2) \cdot 180}{6}=120^{\circ}$.

Find the sum of the interior angle measures of $\triangle Q U V$:

$$
\begin{aligned}
& m \angle Q V U+m \angle V Q U+m \angle V U Q=180^{\circ} \\
& 120^{\circ}+2(m \angle V Q U)=180^{\circ} \\
& 2 m \angle V Q U=60^{\circ} \\
& m \angle V Q U=30^{\circ} \\
& \text { Find } m \angle U Q R: m \angle Q=m \angle V Q U+m \angle U Q R \\
& 120^{\circ}=30^{\circ}+m \angle U Q R \\
& 90^{\circ}=m \angle U Q R
\end{aligned}
$$

Because $\angle U Q R \cong \angle Q R T \cong \angle R T U \cong \angle T U Q$, $m \angle U Q R=m \angle Q R T=m \angle R T U=m \angle T U Q=90^{\circ}$.
d. The quadrilateral is a rectangle because it has two pairs of opposite congruent sides and four right angles.
40.

The quadrilateral is an isosceles trapezoid. Show $\overline{W X} \| \overline{Z Y}$ by showing $\triangle W V X \sim \triangle Y V Z$ which leads to $\angle X W V \cong \angle Z Y V$ and parallel sides. Now show base angles $\angle Z W X \cong \angle Y X W$ using $\triangle Z V W \cong \triangle Y V X$ and $\angle X W V \cong \angle W X V$.

Geometry

41. Square; $P Q R S$ is a square with E, F, G, and H midpoints of the square. Using the definition of a square and the definition of midpoint, $\overline{F Q} \cong \overline{Q G} \cong \overline{G R} \cong \overline{R H} \cong \overline{H S} \cong$ $\overline{S E} \cong \overline{P E} \cong \overline{P F}$. Using the definition of a square, $\angle P \cong \angle Q \cong \angle R \cong \angle S$. Using the SAS Congruence Theorem, $\triangle E P F \cong \triangle F Q G \cong \triangle G R H \cong \triangle H S E$. Using corresponding parts of congruent triangles are congruent, $\overline{E F} \cong \overline{F G} \cong \overline{G H} \cong \overline{H E}$. Because the base angles of all four triangles measure $45^{\circ}, m \angle E F G=$ $m \angle F G H=m \angle G H E=m \angle H E F=90^{\circ}$ since each of these angles along with two 45° angles form a line. By definition, $P Q R S$ is a square.
42. Rhombus; $\overline{J K} \cong \overline{L M}$ and E, F, G, and H are the midpoints of $\overline{J L}, \overline{K L}, \overline{K M}$, and $\overline{J M}$, respectively. Using the definition of midsegment, $\overline{F G}$ and $\overline{E H}$ are parallel to $\overline{L M}$ and half its length. This makes $\overline{F G} \| \overline{E H}$ and $\overline{F G} \cong \overline{E H}$. Using the definition of midsegment, $\overline{G H}$ and $\overline{F E}$ are parallel to $\overline{J K}$ and half its length. This makes $\overline{G H} \| \overline{F E}$ and $\overline{G H} \cong \overline{F E}$. Because $\overline{J K} \cong \overline{L M}$, $\overline{F G} \cong \overline{E H} \cong \overline{G H} \cong \overline{F E}$ by the Transitive Property of Congruence. By definition, $E F G H$ is a rhombus.

Quiz for the lessons "Use Properties of Trapezoids and Kites" and "Identify Special Quadrilaterals"

1. $\angle D \cong \angle A$, so $m \angle D=55^{\circ}$.
$\angle A$ and $\angle B$ are supplementary, so
$m \angle B=180^{\circ}-55^{\circ}=125^{\circ}$.
$\angle B \cong \angle C$, so $m \angle C=125^{\circ}$.
2. $\angle B \cong \angle C$, so $m \angle C=48^{\circ}$.
$\angle B$ and $\angle A$ are supplementary, so
$m \angle A=180^{\circ}-48^{\circ}=132^{\circ}$.
$\angle A \cong \angle D$, so $m \angle D=132^{\circ}$.
3. $\angle A \cong \angle B$, so $m \angle B=110^{\circ}$.
$\angle A$ and $\angle D$ are supplementary, so
$m \angle D=180^{\circ}-110^{\circ}=70^{\circ}$.
$\angle D \cong \angle C$ so $m \angle C=70^{\circ}$.
4. rectangle, square
5. Consecutive sides are congruent and both pairs of opposite angles are congruent, so $E F G H$ is a rhombus.

Mixed Review of Problem Solving for the lessons "Properties of Rhombuses, Rectangles, and Squares", "Use Properties of Trapezoids and Kites", and "Identify Special Quadrilaterals"

1. a. There is exactly one pair of parallel sides.
b. Yes; the trapezoid has a pair of congruent base angles.
2. The diagonals are congruent and bisect each other. So, the quadrilateral is a square or a rectangle. Because the diagonals are perpendicular, $J K L M$ is a square.
3. a. A kite has exactly one pair of opposite congruent angles. Because $\angle T Q R \not \equiv \angle R S T, \angle Q T S \not \equiv \angle Q R S$. $m \angle T Q R+m \angle Q T S+m \angle R S T+m \angle Q R S=360^{\circ}$ $102^{\circ}+125^{\circ}+2(m \angle Q T S)=360^{\circ}$ $227^{\circ}+2(m \angle Q T S)=360^{\circ}$

$$
2(m \angle Q T S)=133^{\circ}
$$

$$
m \angle Q T S=66.5^{\circ}
$$

b. $T P=R P=\frac{1}{2} T R, T P=R P=Q P=7$

Using the Pythagorean Theorem, find $Q R$.
$Q R=\sqrt{Q P^{2}+R P^{2}}=\sqrt{7^{2}+7^{2}} \approx 10$
$\triangle Q P S \cong \triangle Q P R$ by the SAS Congruence Postulate.
So $Q R=Q T \approx 10$ feet.
Using the Pythagorean Theorem, find $R S$.
$R S=\sqrt{R P^{2}+S P^{2}}=\sqrt{7^{2}+4^{2}} \approx 8$
$\triangle S P R \cong \triangle S P T$ by the SAS Congruence Postulate. So $R S=S T \approx 8$ feet.
4. The midsegment is one-half the sum of the length of the bases.
Midsegment $=\frac{1}{2}(48+24)=\frac{1}{2}(72)=36$
The midsegment of trapezoid $A B C D$ is 36 inches.
5. If $W Z=20, W Y=20 \cdot 2=40$. Because the rhombuses are similar, corresponding parts are proportional.

$$
\begin{aligned}
\frac{Q R}{Q S} & =\frac{W X}{W Y} \\
\frac{20}{32} & =\frac{W X}{40} \\
32(W X) & =800 \\
W X & =25
\end{aligned}
$$

The length of $W X$ is 25 .
6. a. $M N P Q$ could be a rectangle, square, or isosceles trapezoid because the diagonals of these quadrilaterals are congruent.
b. For a rectangle you need to know that opposite sides are congruent. For a square you need to know that opposite sides are congruent and that consecutive sides are congruent. For an isosceles trapezoid you need to know that only one pair of opposite sides are parallel.
7. a.

Find the length of $\overline{E F}$.
$E F=\sqrt{(0-2)^{2}+(4-2)^{2}}=2 \sqrt{2}$
$E F G H$ is a rhombus. Because $\overline{H G} \cong \overline{G F} \cong \overline{F E} \cong \overline{E H}$, $H G=G F=F E=E H=2 \sqrt{2}$.
Find the slope of $\overline{F G}$.
Slope of $\overline{F G}=\frac{4-2}{4-2}=\frac{2}{2}=1$
Because $E F G H$ is a rhombus, $\overline{E H} \| \overline{F G}$. So, the slope of $\overline{E H}$ is 1 .
$H(2,6)$ is the only location where
$H G=G F=F E=E H, \overline{H G} \| \overline{F E}$, and $\overline{E H} \| \overline{F G}$.
b. The coordinates of H could be $(2,10)$ or $(2,14)$. Both points allow $E F G H$ to meet the definition of a kite. The points lie on the line with equation $x=2$, excluding $(2,6)$ and $(2,2)$.

Chapter Review for the chapter
 "Quadrilaterals"

1. The midsegment of a trapezoid is parallel to the bases.
2. A diagonal of a polygon is a segment whose endpoints are nonconsecutive vertices.
3. Show the trapezoid has a pair of congruent base angles. Show the diagonals of the trapezoid are congruent.
4. C. Rhombus; because both pairs of opposite sides are parallel and all four sides are congruent.
5. A. Square; there are four right angles and four congruent sides.
6. B. Parallelogram; both pairs of opposite sides are congruent.
7. $(n-2) \cdot 180^{\circ}=3960^{\circ}$

$$
\begin{aligned}
n-2 & =22 \\
n & =24
\end{aligned}
$$

The polygon has 24 sides. It is a 24 -gon. The measure of each interior angle is $\frac{3960^{\circ}}{24}=165^{\circ}$.
8. $x^{\circ}+120^{\circ}+97^{\circ}+130^{\circ}+150^{\circ}+90^{\circ}=(n-2) \cdot 180^{\circ}$
$x+120+97+130+150+90=(6-2) \cdot 180$

$$
\begin{aligned}
x+587 & =720 \\
x & =133
\end{aligned}
$$

9.

$$
\begin{aligned}
x^{\circ}+160^{\circ}+2 x^{\circ}+125^{\circ}+110^{\circ}+112^{\circ}+147^{\circ} & =(n-2) \cdot 180^{\circ} \\
x+160+2 x+125+110+112+147 & =(7-2) \cdot 180 \\
3 x+654 & =900 \\
3 x & =246 \\
x & =82
\end{aligned}
$$

10. $8 x^{\circ}+5 x^{\circ}+5 x^{\circ}=360^{\circ}$

$$
\begin{aligned}
18 x & =360 \\
x & =20
\end{aligned}
$$

11. The measure of one exterior angle is $\frac{360^{\circ}}{9}=40^{\circ}$.
12. $m=10 \quad$ and $\quad n-3=8$

$$
n=11
$$

13. $c+5=11$ and $d+4=14$

$$
c=6 \quad d=10
$$

14. $a-10=18$ and $(b+16)^{\circ}=103^{\circ}$

$$
a=28 \quad b=87
$$

15. $m \angle Q R S=180^{\circ}-m \angle P Q R=180^{\circ}-136^{\circ}=144^{\circ}$ Opposite sides and opposite angles of a parallelogram are congruent.

16. $\overline{E F} \cong \overline{G H}, \overline{F G} \cong \overline{E H}$

Perimeter $=E F+G H+F G+E H$

$$
\begin{aligned}
& =2(E F)+2(F G) \\
16 & =2(5)+2(F G) \\
6 & =2(F G) \\
3 & =F G
\end{aligned}
$$

The length of $\overline{G H}$ is 5 inches. The length of $\overline{F G}$ and $\overline{E H}$ is 3 inches.
17. Consecutive angles of a parallelogram are supplementary.

$$
\begin{aligned}
m \angle J+m \angle M & =180^{\circ} \\
5 x+4 x & =180 \\
9 x & =180 \\
x & =20
\end{aligned}
$$

$m \angle J=5 x=5(20)=100^{\circ}$
$m \angle M=4 x=4(20)=80^{\circ}$
18. $2 x+4=x+9$

$$
\text { 19. } 5 x-4=3 x+2
$$

$$
\begin{aligned}
x+4 & =9 \\
x & =5
\end{aligned}
$$

$$
2 x-4=2
$$

$$
2 x=6
$$

$$
x=3
$$

20. Both pairs of opposite sides are parallel and the diagonals are perpendicular. So the quadrilateral is a rhombus. $y=21$ because diagonals of a rhombus bisect opposite angles. $x^{\circ}+y^{\circ}=90^{\circ}$. So $x=90-21=69$.
21. All four angles are right angles, so the quadrilateral is a rectangle.

$$
\begin{array}{rlrl}
4 x-5 & =3 x+4 & 6 y-10 & =4 y \\
x-5 & =4 & 2 y-10 & =0 \\
x & =9 & y & =5
\end{array}
$$

22.

$$
\begin{aligned}
\ell & =\text { length of one side } \\
& =\sqrt{5^{2}+12^{2}} \\
& =\sqrt{169} \\
& =13
\end{aligned}
$$

The length of one side is 13 centimeters.
23. $m \angle G=m \angle F=79^{\circ}$
$m \angle J=180^{\circ}-m \angle F=180^{\circ}-79^{\circ}=101^{\circ}$
$m \angle H=m \angle J=101^{\circ}$

Geometry

24.

$$
\begin{aligned}
M N & =\frac{1}{2}(F G+J H) \\
16.5 & =\frac{1}{2}(19+J H) \\
33 & =19+J H \\
14 & =J H
\end{aligned}
$$

The length of $\overline{J H}$ is 14 inches.
25. All four sides of the quadrilateral are congruent, so it is a rhombus. You do not know the angle measures, so it cannot be determined if it is a square.
26. $\angle E$ and $\angle H$ are supplementary, so $\overline{E F} \| \overline{H G}$, but $\angle G$ and $\angle H$ are not supplementary, so $\overline{E H}$ is not parallel to $\overline{F G}$.
Since $E F G H$ has exactly one pair of parallel sides, it is a trapezoid.
27. Because both pairs of opposite sides are congruent, the quadrilateral is a parallelogram. You do not know if the angles are right angles. So it cannot be classified as a rectangle.
28. The quadrilateral has three right angles. Because the sum of the measures of the interior angles is 360°, the fourth angle is a right angle. So the quadrilateral is a rectangle. Because consecutive sides of the rectangle are congruent, the rectangle is a square.

Chapter Test for the chapter "Quadrilaterals"

1. $x^{\circ}+103^{\circ}+122^{\circ}+98^{\circ}+99^{\circ}=(n-2) \cdot 180^{\circ}$

$$
\begin{aligned}
x+103+122+98+99 & =(5-2) \cdot 180 \\
x+422 & =540 \\
x & =118
\end{aligned}
$$

Consecutive sides $\overline{J K}$ and $\overline{K L}$ and $\overline{L M}$ and $\overline{J M}$ are congruent. So JKLM is a kite.
c. $J K L M$ could be a parallelogram, trapezoid, or rectangle.
14. Trapezoid; exactly one pair of parallel sides are parallel.
15. Rhombus; by the Triangle Sum Theorem, Linear Pair Postulate, and the Vertical Angle Theorem, the diagonals $\overline{E G}$ and $\overline{H F}$ are perpendicular.
16. Kite; The diagonal forms similar triangles by the SAS Postulate, so there are two pairs of consecutive congruent sides.
17. midsegment $=\frac{1}{2}(W X+Y Z)$

$$
\begin{aligned}
2.75 & =\frac{1}{2}(W X+4.25) \\
5.5 & =W X+4.25 \\
1.25 & =W X
\end{aligned}
$$

The length of $\overline{W X}$ is 1.25 centimeters.

$$
\text { 18. } \begin{aligned}
R S+T U+S T+R U & =42 \\
R S+R S+S T+S T & =42 \\
2 R S+2 S T & =42 \\
2 R S+2(R S+3) & =42 \\
4 R S+6 & =42 \\
4 R S & =36 \\
R S & =9
\end{aligned}
$$

The length of $\overline{R S}$ is 9 centimeters and the length of $\overline{S T}$ is 12 centimeters.

Chapter Algebra Review for the chapter "Quadrilaterals"

1. $y=3 x^{2}+5$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	17	8	5	8	17

2. $y=-2 x^{2}+4$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-4	2	4	2	-4

3. $y=0.5 x^{2}-3$

\boldsymbol{x}	-4	-2	0	2	4
\boldsymbol{y}	5	-1	-3	-1	5

4. $y=3(x+3)^{2}-3$

\boldsymbol{x}	-5	-4	-3	-2	-1
\boldsymbol{y}	9	0	-3	0	9

5. $y=-2(x-4)^{2}-1$

\boldsymbol{x}	2	3	4	5	6
\boldsymbol{y}	-9	-3	-1	-3	-9

6. $y=\frac{1}{2}(x-4)^{2}+3$

\boldsymbol{x}	1	3	4	5	7
\boldsymbol{y}	7.5	3.5	3	3.5	7.5

7. $y=3^{x}$

x	-2	-1	0	1	2
\boldsymbol{y}	$\frac{1}{9}$	$\frac{1}{3}$	1	3	9

8. $y=8^{x}$

\boldsymbol{x}	-1	-0.5	0	0.5	1
\boldsymbol{y}	$\frac{1}{8}$	0.35	1	2.83	8

Geometry

9. $y=2.2^{x}$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	0.21	0.45	1	2.2	4.84

10. $y=\left(\frac{1}{3}\right)^{x}$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	9	3	1	$\frac{1}{3}$	$\frac{1}{9}$

11. $y=x^{3}$

\boldsymbol{x}	-1.5	-1	0	1	1.5
\boldsymbol{y}	-3.38	-1	0	1	3.38

12. $y=x^{3}-2$

x	-2	-1	0	1	2
y	-10	-3	-2	-1	6

13. $y=3 x^{3}-1$

\boldsymbol{x}	-1	-0.5	0	0.5	1
\boldsymbol{y}	-4	-1.38	-1	-0.63	2

14. $y=2|x|$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	4	2	0	2	4

15. $y=2|x|-4$

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	0	-2	-4	-2	0

16. $y=-|x|-1$

\boldsymbol{x}	-4	-2	0	2	4
\boldsymbol{y}	-5	-3	-1	-3	-5

Extra Practice

For the chapter "Quadrilaterals"

1. Quadrilateral; $(4-2) \cdot 180^{\circ}=360^{\circ}$
$x^{\circ}+59^{\circ}+128^{\circ}+61^{\circ}=360^{\circ}$

$$
x=112
$$

2. Pentagon; $(5-2) \cdot 180^{\circ}=540^{\circ}$
$x^{\circ}+137^{\circ}+82^{\circ}+140^{\circ}+91^{\circ}=540^{\circ}$

$$
x=90
$$

3. Heptagon; $(7-2) \cdot 180^{\circ}=900^{\circ}$
$x^{\circ}+154^{\circ}+115^{\circ}+122^{\circ}+149^{\circ}+153^{\circ}+90^{\circ}=900^{\circ}$

$$
x=117
$$

4. $x^{\circ}+146^{\circ}+136^{\circ}=360^{\circ}$

$$
x=78
$$

5. $x^{\circ}+46^{\circ}+94^{\circ}+35^{\circ}+\left(180^{\circ}-148^{\circ}\right)+85^{\circ}=360^{\circ}$ $x=68$
6. Pentagon; $(5-2) \cdot 180^{\circ}=540^{\circ}$
$x^{\circ}+101^{\circ}+107^{\circ}+x^{\circ}+100^{\circ}=540^{\circ}$

$$
\begin{aligned}
2 x & =232 \\
x & =116
\end{aligned}
$$

7. $(6-2) \cdot 180^{\circ}=720^{\circ}$

Interior angle: $\frac{720^{\circ}}{6}=120^{\circ}$
Exterior angle: $\frac{360^{\circ}}{6}=60^{\circ}$
The measure of an interior angle of a regular hexagon is 120°. The measure of an exterior angle of a regular hexagon is 60°.
8. $(9-2) \cdot 180^{\circ}=1260^{\circ}$

Interior angle: $\frac{1260^{\circ}}{9}=140^{\circ}$
Exterior angle: $\frac{360^{\circ}}{9}=40^{\circ}$
The measure of an interior angle of a regular 9-gon is 140°. The measure of an exterior angle of a regular 9-gon is 40°.
9. $(17-2) \cdot 180^{\circ}=2700^{\circ}$

Interior angle: $\frac{2700^{\circ}}{17} \approx 158.8^{\circ}$
Exterior angle: $\frac{360^{\circ}}{17} \approx 21.2^{\circ}$
The measure of an interior angle of a regular 17-gon is about 158.8°. The measure of an exterior angle of a regular 17 -gon is about 21.2°.
10. $a=7, b=12$
11. $2 a+4=14$

$$
\begin{aligned}
2 a & =10 \\
a & =5 \\
b+1 & =6 \\
b & =5
\end{aligned}
$$

So, $a=5$ and $b=5$.
12. $a=18$

$$
\begin{aligned}
\frac{2}{3} a & =b \\
\frac{2}{3}(18) & =b \\
12 & =b
\end{aligned}
$$

So, $a=18$ and $b=12$.
13. $b=63$
$a=180-63$
$a=117$
So, $a=117$ and $b=63$.
14. $a^{\circ}+3 a^{\circ}=180^{\circ}$

$$
\begin{aligned}
4 a & =180 \\
a & =45
\end{aligned}
$$

$b=3 a$
$b=3(45)$
$b=135$
So, $a=45$ and $b=135$.
16. $\angle W X V \cong \angle Y Z V$
17. $\angle Z W V \cong \angle X Y V$
18. $\angle W V X \cong \angle Y V Z$
19. $W V=Y V$
20. $W Z=Y X$
21. $2 \cdot Z V=Z X$
22.

$A B=\sqrt{(7-5)^{2}+(3-6)^{2}}=\sqrt{13}$
$C D=\sqrt{(3-5)^{2}+(1-(-2))^{2}}=\sqrt{13}$
So, $\overline{A B} \cong \overline{C D}$.
Slope of $\overline{A B}=\frac{3-6}{7-5}=-\frac{3}{2}$
Slope of $\overline{C D}=\frac{1-(-2)}{3-5}=-\frac{3}{2}$
Slopes are equal, so $\overline{A B} \| \overline{C D}, \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, so $A B C D$ is a parallelogram.
23.

$A B=\sqrt{(-6-(-8))^{2}+(3-2)^{2}}=\sqrt{5}$
$C D=\sqrt{(-3-(-1))^{2}+(1-2)^{2}}=\sqrt{5}$
So, $\overline{A B} \cong \overline{C D}$.
Slope of $\overline{A B}=\frac{3-2}{-6-(-8)}=\frac{1}{2}$
Slope of $\overline{C D}=\frac{1-2}{-3-(-1)}=\frac{1}{2}$
Slopes are equal, so $\overline{A B} \| \overline{C D}$.
$\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, so $A B C D$ is a parallelogram.
24.

$A B=\sqrt{(2-(-1))^{2}+(14-11)^{2}}=\sqrt{18}=3 \sqrt{2}$
$C D=\sqrt{(3-6)^{2}+(8-11)^{2}}=\sqrt{18}=3 \sqrt{2}$
So, $\overline{A B} \cong \overline{\mathrm{CD}}$.
Slope of $\overline{A B}=\frac{14-11}{2-(-1)}=1$
Slope of $\overline{C D}=\frac{8-11}{3-6}=1$
Slopes are equal, so $\overline{A B} \| \overline{C D} . \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, so $A B C D$ is a parallelogram.
25.

$A B=\sqrt{(4-(-1))^{2}+(-4-(-5))^{2}}=\sqrt{26}$
$C D=\sqrt{(1-6)^{2}+(-10-(-9))^{2}}=\sqrt{26}$
So, $\overline{A B} \cong \overline{C D}$.
Slope of $\overline{A B}=\frac{-4-(-5)}{4-(-1)}=\frac{1}{5}$
Slope of $\overline{C D}=\frac{-10-(-9)}{1-6}=\frac{1}{5}$
Slopes are equal, so $\overline{A B} \| \overline{C D} . \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, so $A B C D$ is a parallelogram.
26. Draw $\overline{P R}$ to form $\triangle P Q R$ and $\triangle R S P$. Show that $\triangle P Q R \cong \triangle R S P$. Then show that $\angle Q P R \cong \angle S R P$ and $\angle Q R P \cong \angle S P R$. Use the Alternate Interior Angles Converse to show that $\overline{P S} \| \overline{R Q}$ and $\overline{P Q} \| \overline{R S}$. Then by definition, $P Q R S$ is a parallelogram.
27. Show that $\triangle P Q R \cong \triangle R S P$ by the AAS Congruence Theorem. Show that $\angle Q P R \cong \angle S R P, \overline{P Q} \cong \overline{R S}$ and $\overline{Q R} \cong \overline{S P}$. Use the Alternate Interior Angles Converse to show that $\overline{P S} \| \overline{R Q}$ and $\overline{P Q} \| \overline{R S}$. Then by definition, $P Q R S$ is a parallelogram.
28. $\angle P T Q \cong \angle R T S$ because they are vertical angles. Show that $\triangle P T Q \cong \triangle R T S$ by the AAS Congruence Theorem. Show that $\overline{P T} \cong \overline{R T}$ and $\angle P T S \cong \angle R T Q$. Use the SAS Congruence Postulate to show that $\triangle P T S \cong \triangle R T Q$. Show that $\angle T R Q \cong \angle T P S$. Finally show that $\overline{P S} \| \overline{R Q}$ and $\overline{P Q} \| \overline{R S}$ using the Alternate Interior Angles Converse. Then by definition, $P Q R S$ is a parallelogram.
29. Square; because both pairs of opposite angles of the quadrilateral are congruent, $A B C D$ is a parallelogram (Theorem 8.8); because each diagonal bisects a pair of opposite angles, $A B C D$ is a rhombus (Theorem 8.12); because the diagonals of parallelogram $A B C D$ are congruent, it is a rectangle (Theorem 8.13); because $A B C D$ is a rhombus and a rectangle, it is a square (Square Corollary).
30. Rhombus; because $P Q R S$ has a pair of opposite sides that are congruent and parallel, it is a parallelogram (Theorem 8.9); by the Triangle Sum Theorem and the definition of perpendicular, the diagonals are perpendicular; because $P Q R S$ is a parallelogram with perpendicular diagonals, it is a rhombus (Theorem 8.11).
31. Rectangle; because opposite sides are congruent, $V W X Y$ is a parallelogram (Theorem 8.7); because its diagonals are congruent, $V W X Y$ is a rectangle (Theorem 8.13).
32. The diagonals of a rhombus are perpendicular, so $m \angle L Q M$ $=90^{\circ}$.

$$
\begin{aligned}
m \angle L M Q+m \angle Q L M+m \angle L Q M & =180^{\circ} \\
m \angle L M Q+30^{\circ}+90^{\circ} & =180^{\circ} \\
m \angle L M Q & =60^{\circ}
\end{aligned}
$$

33. The diagonals of a rhombus are perpendicular, so $m \angle L Q M$ $=90^{\circ}$.
34. The four sides of a rhombus are congruent, so $M N=5$.
35. $x=\frac{1}{2}(19+31)$

$$
x=25
$$

36. $34=\frac{1}{2}(x+43)$

$$
\text { 37. } \begin{aligned}
0.5 & =\frac{1}{2}(0.6+x) \\
1 & =0.6+x \\
0.4 & =x
\end{aligned}
$$

$68=x+43$
$25=x$
38. $m \angle V=m \angle S=75^{\circ}$
39. $m \angle S=m \angle V$

$$
\begin{aligned}
m \angle S+m \angle T+m \angle V+m \angle R & =360^{\circ} \\
m \angle V+104^{\circ}+m \angle V+60^{\circ} & =360^{\circ} \\
2(m \angle V)+164^{\circ} & =360^{\circ} \\
2(m \angle V) & =196^{\circ} \\
m \angle V & =98^{\circ}
\end{aligned}
$$

40. $m \angle T=m \angle R=90^{\circ}$

$$
\begin{aligned}
m \angle V+m \angle R+m \angle S+m \angle T & =360^{\circ} \\
m \angle V+90^{\circ}+80^{\circ}+90^{\circ} & =360^{\circ} \\
m \angle V & =100^{\circ}
\end{aligned}
$$

41. The diagonals bisect each other. By Theorem 8.10, $A B C D$ is a parallelogram.
42. $m \angle A+m \angle B+m \angle C+m \angle D=360^{\circ}$

$$
\begin{aligned}
119^{\circ}+m \angle B+51^{\circ}+61^{\circ} & =360^{\circ} \\
m \angle B & =129^{\circ}
\end{aligned}
$$

Because $m \angle A+m \angle D=180^{\circ}$ and $m \angle B+m \angle C=180^{\circ}$, by the Consecutive Interior Angles Converse, $\overline{A B} \| \overline{C D}$. So, $A B C D$ is a trapezoid.
43. Because one pair of opposite sides, $\overline{A D}$ and $\overline{B C}$, are congruent and parallel, $A B C D$ is a parallelogram by Theorem 8.9. Because the diagonals of the parallelogram are perpendicular, by Theorem $8.11 A B C D$ is a rhombus.
44. Because the diagonals $\overline{A C}$ and $\overline{B D}$ bisect each other, $A B C D$ is a parallelogram. $A B C D$ is also a rectangle because its diagonals are congruent and a rhombus because its diagonals are perpendicular. Because $A B C D$ is a rectangle and a rhombus, $A B C D$ is a square.
45. Because $\overline{A B} \| \overline{C D}, m \angle D+m \angle A=180^{\circ}$ and $m \angle B+m \angle C=180^{\circ}$. So, $m \angle D=65^{\circ}$ and $m \angle B=115^{\circ}$. Because the base angles are congruent and $A B C D$ has one pair of parallel opposite sides, $A B C D$ is an isosceles trapezoid.
46. By the Alternate Interior Angles Converse, one pair of opposite sides is parallel, and that pair is congruent, so $A B C D$ is a parallelogram (Theorem 8.9); by the ASA Congruence Postulate, $\triangle G A D \cong \triangle G D A \cong \triangle G B C \cong$ $\triangle G C B$; by the definition of congruence, $A G=D G=$ $C G=B G$; the diagonals of parallelogram $A B C D$ are congruent, so it is a rectangle (Theorem 8.13); the diagonals are not perpendicular, so $A B C D$ is not a rhombus (Theorem 8.11); rectangle $A B C D$ is not a rhombus, so it is not a square (Square Corollary).
47.

$D E=\sqrt{(9-6)^{2}+(12-8)^{2}}=5$
$E F=\sqrt{(12-9)^{2}+(8-12)^{2}}=5$
$F G=\sqrt{(9-12)^{2}+(6-8)^{2}}=\sqrt{13}$
$G D=\sqrt{(6-9)^{2}+(8-6)^{2}}=\sqrt{13}$
$D E F G$ is a kite because two pairs of consecutive sides are congruent and the opposite sides are not congruent.
48.

$D E=\sqrt{(4-1)^{2}+(1-2)^{2}}=\sqrt{10}$
$E F=\sqrt{(3-4)^{2}+(-2-1)^{2}}=\sqrt{10}$
$F G=\sqrt{(0-3)^{2}+(-1-(-2))^{2}}=\sqrt{10}$
$G D=\sqrt{(1-0)^{2}+(2-(-1))^{2}}=\sqrt{10}$
Slope of $\overline{D E}=\frac{1-2}{4-1}=-\frac{1}{3}$
Slope of $\overline{E F}=\frac{-2-1}{3-4}=3$

Slope of $\overline{F G}=\frac{-1-(-2)}{0-3}=-\frac{1}{3}$
Slope of $\overline{G D}=\frac{2-(-1)}{1-0}=3$
So, $\angle D, \angle E, \angle F$, and $\angle G$ are right angles because the segments that form them are perpendicular. $D E F G$ is a square because the four sides are congruent and the four angles are right angles.
49.

Slope of $\overline{D E}=\frac{4-3}{14-10}=\frac{1}{4}$
Slope of $\overline{E F}=\frac{2-4}{20-14}=-\frac{1}{3}$
Slope of $\overline{F G}=\frac{0-2}{12-20}=\frac{1}{4}$
Slope of $\overline{G D}=\frac{3-0}{10-12}=-\frac{3}{2}$
So, $\overline{D E} \| \overline{F G}$. $D E F G$ is a trapezoid because it has one pair of parallel sides.
50.

Slope of $\overline{D E}=\frac{13-10}{1-(-2)}=1$
Slope of $\overline{E F}=\frac{13-13}{5-1}=0$
Slope of $\overline{F G}=\frac{13-6}{5-(-2)}=1$
Slope of $\overline{G D}=\frac{10-6}{-2-(-2)}=\frac{4}{0}=$ undefined
So, $\overline{D E} \| \overline{F G}$.
$E F=\sqrt{(5-1)^{2}+(13-13)^{2}}=4$
$G D=\sqrt{(-2-(-2))^{2}+(10-6)^{2}}=4$
So, $\overline{E F} \cong \overline{G D}$. $D E F G$ is an isosceles trapezoid because it has one pair of parallel sides and one pair of non-parallel congruent sides.

Geometry

