\qquad
\qquad
\qquad

Geometry Mastery Test \#1 Review \#2

Short Answer

1. If $R S=35.2$ and $Q S=72$, find $Q R$.

2. Find the distance between the points $(1,-2)$ and $(-4,-3)$.
3. Find the midpoint of the segment with endpoints $(-6,-8)$ and $(7,6)$.
4. If $m \angle H O I=21^{\circ}$ and $m \angle G O I=50^{\circ}$, then what is the measure of $\angle G O H$?

5. $m \angle S Q R=(2 x+6)^{\circ}$ and $m \angle P Q R=(10 x-5)^{\circ}$ and $m \angle S Q P=61^{\circ}$.

Find $m \angle S Q R$ and $m \angle P Q R$.

6. In the figure (not drawn to scale), $\overrightarrow{M O}$ bisects $\angle L M N, m \angle L M O=(5 x-24)^{\circ}$, and $m \angle N M O=(x+52)^{\circ}$. Solve for x and find $m \angle L M N$.

7. Name an angle sup plementary to $\angle D O E$.

Complete the conditional statement to make a true statement.
8. If $\angle R$ and $\angle S$ are complementary and $m \angle R=15^{\circ}$, then
9. If $\angle G$ and $\angle H$ are supplementary and $m \angle H=69^{\circ}$, then \qquad .
10. Name a polygon with 8 sides.
11. The midpoint of $\overline{J K}$ is $M(0,7)$. One endpoint is $J(7,8)$. Find the coordinates of the other endpoint.

12. Determine the coordinates of the midpoint of $\overline{Y Z}$ and find the approximate distance $Y Z$ for the points $Y(3,-6)$ and $Z(4,7)$.
13. Find the midpoint of the segment with endpoints $(1,-1)$ and $(-17,17)$.
14. If $m \angle I O J=22^{\circ}$ and $m \angle J O K=21^{\circ}$, then what is the measure of $\angle I O K$?

15. Classify the angle as right, acute, or obtuse.

16. Solve for x :

Geometry Mastery Test \#1 Review \#2
Answer Section

SHORT ANSWER

1. 36.8
2. $\sqrt{26}$
3. $\left(\frac{1}{2},-1\right)$
4. 29°
5. $m \angle S Q R=16^{\circ}$ and $m \angle P Q R=45^{\circ}$
6. $19,142^{\circ}$
7. $\angle C O D$
8. $m \angle S=75^{\circ}$
9. $m \angle G=111^{\circ}$
10. octagon
11. $(-7,6)$
12. midpoint $=\left(\frac{7}{2}, \frac{1}{2}\right)$
distance $=\sqrt{170} \approx 13$
13. $(-8,8)$
14. 43°
15. right
16. $x=14$
